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The hydrodynamic stability of flow over 
Kramer-type compliant surfaces. 

Part 1. Tollmien-Schlichting instabilities 
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The hydrodynamic stability of flows over Kramer-type compliant surfaces is studied. 
Two main types of instability are considered. First, there are those which could not 
exist without viscosity, termed Tollmien-Schlichting Type Instabilities (TSI). 
Secondly, there are Flow-Induced Surface Instabilities (FISI), that depend funda- 
mentally on surface flexibility and could exist with an inviscid fluid flow. Part 1, the 
present paper, deals mainly with the first type. The original Kramer experiments and 
the various subsequent attempts to confirm his results are reviewed, together with 
experimental studies of transition in flows over compliant surfaces and theoretical 
work concerned with the hydrodynamic stability of such flows. 

The Kramer-type compliant surface is assumed to be an elastic plate supported 
by springs which are modelled by an elastic foundation. It is also assumed that the 
plate is backed by a viscous fluid substrate having, in general, a density and viscosity 
different from the mainstream fluid. The motion of the substrate fluid is assumed 
to be unaffected by the presence of the springs and is determined by solving the 
linearized Navier-Stokes equations. The visco-elastic properties of the plate and 
springs are taken into account approximately by using a complex elastic modulus 
which leads to complex flexural rigidity and spring stiffness. Values for the various 
parameters characterizing the surface properties are estimated for the actual Kramer 
coatings. 

The boundary-layer stability problem for a flexible surface is formulated in a 
similar way to that of Landahl(l962) whereby the boundary condition at the surface 
is expressed in terms of an equality between the surface and boundary-layer 
admittances. This form of the boundary condition is exploited to develop an 
approximate theory which determines whether a particular change to the mechanical 
properties of the surface will be stabilizing or destabilizing with respect to the TSI. 
It is shown that a reduction in flexural rigidity and spring stiffness, an increase in 
plate mass, and the presence of an inviscid fluid substrate are all stabilizing, whereas 
viscous and visco-elastic damping are destabilizing. 

Numerical solutions to the Orr-Sommerfeld equation are also obtained. Apart from 
Kramer-type compliant surfaces, solutions are also presented for the rigid wall, for 
the spring-backed tensioned membrane with damping, previously considered by 
Landahl & Kaplan (1965), and for some of the compliant surfaces investigated 
experimentally by Babenko and his colleagues. The results for the Kramer-type 
compliant surfaces on the whole confirm the predictions of the simple theory. For 
a free-stream speed of 18m/s the introduction of a viscous substrate leads to a 
complex modal interaction between the TSI and FISI. A single combined unstable 
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mode is formed in the case of highly viscous substrate fluids and in this case increased 
damping has a stabilizing effect. When the free-stream speed is reduced to 15 m/s 
the modal interaction no longer occurs. In  this case the effects of combined viscous 
and visco-elastic damping are investigated. It is found that damping tends to have 
a strong stabilizing effect on the FISI, in the form of travelling-wave flutter, but a 
weaker destabilizing effect on the TSI. The opposing effects of damping on the two 
modes of instability forms the basis of a possible explanation for Kramer’s empirical 
observation of an optimum substrate viscosity. Results obtained using the es method 
also indicate that a substantial transition delay is theoretically possible for flows over 
Kramer’s compliant coatings. 

1. Introduction 
More than twenty-five years have passed since Kramer (1957,1960a) first described 

his pioneering experiments on compliant coatings. Nevertheless, despite much work 
by subsequent investigators, both theoretical and experimental, apparently no 
independent evidence has been obtained for the drag-reducing capabilities of 
Kramer’s coatings. Indeed, in many such tests, similar coatings have actually yielded 
higher drags than comparable rigid surfaces. It is probably no exaggeration to suggest 
that the credibility of Kramer’s coatings is now rather low. Certainly, current 
research has been focused on rather different sorts of compliant surfaces. 

In our opinion, however, the case against Kramer’s coatings may not be so strong 
as popularly supposed. Kramer himself believed that the drag reductions achieved 
in his tests were a result of the transition-delaying properties of his coatings. A t  
present there is no hard evidence to support this view. On the other hand, it is also 
true, as we will seek to show below, that the independent tests carried out on the 
Kramer coatings were completely unsuitable for investigating transition. It also 
appears that hitherto no reasonably complete theoretical study has been undertaken 
of the hydrodynamic stability of flows over Kramer-type surfaces in order to see 
whether there is any theoretical basis for Kramer’s views. The main objective of the 
present paper is to describe such a study. Much of the analysis and many of the results 
should have a wider application, however. 

It is also possible, of course, that the drag reductions observed by Kramer were 
a result of the compliant surface interacting in some way with a fully developed 
turbulent boundary layer. It could be argued that this would be a more fruitful line 
of inquiry than a study of the transition process. After all it has been established 
experimentally (see Walters & Blick 1968; Blick et al. 1969; Grosskreutz 1971, 1975; 
Loof 1974; and Fischer et al. 1975) that turbulence levels can be reduced in boundary 
layers over certain compliant surfaces. Nevertheless, in our opinion, there is little 
prospect in the near future of achieving any sort of real understanding of the influence 
of compliant surfaces on turbulent boundary layers. On the other hand it seems to 
us that very considerable progress could be made towards an increased understanding 
of the transition process simply by adapting and extending existing techniques. By 
and large this is the course we have followed in the present paper by applying linear 
hydrodynamic stability theory to compliant surfaces. 

Benjamin (1960) has shown that the transition process over flexible surfaces is 
complicated by the appearance of additional modes of instability. For a passive 
surface there are two broad categories of instabilities. First, there are those 
instabilities which could not exist without viscosity. These we will call Tollmien- 
Schlichting Type Instabilities (hereinafter referred to as TSI). They can be radically 
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affected by the induced surface motion but remain essentially similar to those in the 
boundary layer over a rigid surface. These instabilities are the subject of Part 1 ,  
the present paper. Second, there are the instabilities which depend fundamentally 
on surface flexibility and could exist with an inviscid fluid flow. These we will call 
Flow-Induced Surface Instabilities (hereinafter referred to  as FISI). On the whole 
they are similar to the instabilities encountered in aeroelasticity. Part 2 will be 
devoted to these instabilities. 

It could be argued that the categorization of the types of instability, proposed in 
the previous paragraph, is rather artificial. After all, both the TSI and FISI in the 
form of travelling-wave flutter are eigenvalues of the system comprising the 
Orr-Sommerfeld equation coupled with the equation of motion for the compliant 
surface. In  fact, when the compliant surface is dissipative a complex interaction may 
occur? between these two modes of instability. Insofar as they can be obtained 
numerically as eigenvalues of the coupled Orr-Sommerfeld/surface equations, the 
FISI are investigated in Part 1 ,  the present paper. However, a purely inviscid theory 
can be developed for the FISI and such a theory will be presented in Part 2. Not 
only are many additional features of the FISI elucidated by this inviscid theory but, 
in addition, its results are required in order to obtain the present numerical solutions 
for the travelling-wave flutter form of the FISI. Moreover, some modes of the FISI, 
such as static divergence, cannot be investigated by means of numerical integration 
of the Orr-Sommerfeld equation. 

Section 2 of this paper contains a review of previous work, subdivided into $2.1 
which describes Kramer’s experimental investigations, $2.2 which reviews other 
relevant experimental work, and $2.3 which reviews the literature concerned with 
stability analyses of boundary layers over compliant surfaces. Section 3 describes the 
theoretical model for Kramer-type compliant coatings and the evaluation of the 
parameters characterizing the Kramer coatings. The boundary-layer stability problem 
for a flexible surface is formulated in $4.  An approximate theory for TSI on flexible 
surfaces is developed in $5. The numerical methods used for the present work are 
described in $6. The results of the numerical analysis are presented and discussed 
in $7 .  Results for a rigid flat plate are given in $7.1. In $7.2 a comparison is made 
between Landahl & Kaplan’s (1965) and our results for a spring-backed membrane. 
A comparison is also made in $7.3 between the results of the present theory and of 
an experimental investigation into hydrodynamic stability of flow over flexible 
surfaces carried out by Babenko and his colleagues. Lastly, in $7.4, the Kramer 
coatings are investigated. Section 8 contains the conclusions drawn from the present 
study of TSI in flows over compliant surfaces. 

2. Review of previous work 
2. I . Kramer’s experimental investigations 

The first type of compliant surface designed by Kramer (1957, 1960a) is shown in 
figure 1 (a, b). An inner rigid wall was covered by a flexible inner skin which was 
connected to a fairly thick (2  mm) outer flexible diaphragm by a closely spaced array 
of stubs. The flexible inner skin, outer diaphragm and stubs were all made of the same 
soft natural rubber. The cavity between the outer diaphragm and inner skin was filled 
with a highly viscous damping fluid. In Kramer’s view the function of this fluid was 
to damp out ‘ boundary-layer ’ waves (presumably he was referring to TSI). The 

t A complete analysis of these interactions will be presented in Part 3. 
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FIQURE 1. Kramer’s coating and model. All dimensions in mm. (Drawings based on those given 
by Kramer 1960a.) (a) Cross-section. ( b )  Cut through stubs. (c) Model: shaded regions were coated. 

damping mechanism was assumed to involve an interaction between the fluid motion 
in the cavity and the stubs. Accordingly, the spacing between the stubs was chosen 
to  be about one-quarter of the sritical wavelength at the design speed. Kramer also 
considered that if the stiffness and inherent damping of the heavy outer diaphragm 
were properly chosen then it could act as distributed damping and thereby reduce 
the detrimental effects of the local turbulent disturbances which have a much higher 
frequency than TSI. Thus the coating was regarded as consisting of two wide- 
frequency-band dampers. 

Kramer (1960b) apparently studied the mechanical properties of dolphin skin fairly 
closely before designing thc compliant coating depicted in figure 1 (a, b). Certainly, 
from photographs of sections through dolphin skin presented by Kramer (1960b, 
1965) it appears that his coatings bear a considerable resemblance to  dolphin skin. 
According to Babenko, Gintetskii & Kozlov (1969) and Babenko, Kozlov & Pershin 
(1972), however, Kramer’s photographs are misleading and, in fact, his coatings 
would not function in the same way as dolphin skin. A simplified diagram of a section 
through a typical portion of dolphin skin is shown in figure 2, which is based on 
figure 115 of Aleev (1977). The upper epidermal layer forms a comparatively dense 
elastic membrane and is thought capable of transmitting without distortion all 
boundary-layer pressure fluctuations to the underlying layer of the epidermis. This 



The stability of jlows over Kramer-type compliant surfaces 469 

Upper epidermal layer 
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Dermal papillae 

(b) 
FIGURE 2. Structure of dolphin skin (based on photographs given in figure 115 of Aleev 1977). 

(a) Cross-section. (a) Cut through dermal papillae at AA‘. 

layer and the dermal papillae are made of looser, more hydrated tissue including fat 
cells. Thus, unlike the stubs in Kramer’s coatings, the papillae in dolphin skin are 
actually more readily deformable than their surroundings. Babenko et al. also claim 
that the blood flow through the dermal papillae can be regulated thereby allowing 
the viscoelastic properties of the papillary layers of the dermis and the skin as a whole 
to be altered by the nervous system. This would mean that dolphin skin is subject 
to a certain amount of active control, unlike Kramer’s purely passive coatings. 

Kramer’s coatings may not have functioned like dolphin skin but, nevertheless, 
his test results showed that very considerable drag reductions could be achieved with 
them. Some preliminary test results were reported by Kramer (1957). These were 
promising, so further tests were carried out under more carefully controlled conditions. 
These tests and their results are described by Kramer (19604. The coated model used 
for these tests is depicted in figure 1(c). It was a streamlined body of revolution 
consisting of a 470 mm long tip having a tabulated contour followed by a cylindrical 
aft section 673 mm in length and 63.5 mm in diameter. The first 152 mm of the tip, 
a 13 mm transition section between the tip and the cylinder and the last 38 mm of 
the cylinder were not covered with compliant coating. The model was sling-mounted 
to an after-body and the whole was towed in the sea at  speeds up to 18 m/s. The 
ambient turbulence level was less than 0.1 yo at the time of the tests although it varied 
considerably with the time of year (Kramer 1962, 1965). 
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FIGURE 3. The drag coefficient of various Kramer coatings as a function of Reynolds number. Curve 
A: The rigid reference model. Curves B, C, D: Coated models, coating stiffnesses: B, 0.434 N mm-3; 
C, 0.217 N mm-3; D, 0.167 N mm-3. Curve E: Fully turbulent flow. Curve F: Fully laminar flow. 

Three different rubbers were used, giving coatings with three different grades of 
stiffness. Several different damping fluids having a wide range of kinematic viscosities 
were also tested. Kramer’s ( 1 9 6 0 ~ )  results are displayed in figure 3 as drag coefficients 
plotted against Reynolds number. It can be seen that the coating having intermediate 
stiffness performed best, with a drag reduction of almost 60 % at the highest Reynolds 
number. Kramer also found that a 300 cSt damping fluid gave the best results for 
this coating. 

It waa found subsequently that the coatings tended to deteriorate with the passing 
of time and then yielded inferior results. Consequently Kramer (1962) designed and 
tested a more robust type of coating. With this new design the stubs were replaced 
by longitudinal ribs aligned in the flow direction. These new coatings performed 
slightly less well than freshly made coatings of the original design, but nevertheless 
still possessed a very considerable drag-reduction capability. 

2.2. Other experimental work 
On the whole, the comments made below will be confined to experimental studies of 
Kramer-type coatings and of transition on any sort of compliant surface. A much 
more comprehensive review of the experimental work with compliant surfaces is given 
by Bushnell & Hefner (1977). There are also the more specialized reviews by 
Dinkelacker (1977) and de Loof (1974), who mostly deal, respectively, with work at 
the Max-Planck-Institut fiir Stromungsforschung, Gottingen, and at Bertin et Cie, 
France. 

Before reviewing the attempts made to confirm Kramer’s results it is worth briefly 
considering what requirements should be met by such experimental investigations 
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in order to make a favourable outcome likely. First, let us consider the coating itself. 
Kramer’s results in figure 3 suggest that the value of the coating stiffness is fairly 
critical. A coating performs much less well if it is less or more stiff than the optimum 
value. Our own theoretical results bear this out. In Part 2 (some preliminary results 
are given by Garrad & Carpenter 1982; Carpenter & Grtrrad 1982; and Carpenter 
1984b) we find that the best coating (C) is marginally unstable with respect to FISI 
at the top test speed, while the softest coating (D) appears to be much more unstable. 
On the other hand our theoretical results in 97 of this paper show that the hardest 
coating (B) is much less efficient at  reducing the growth rate of TSI. Our results also 
indicate that viscoelastic damping may have a strong influence on the FISI. From 
these considerations it can be concluded that a successful coating should be as similar 
as possible to Kramer’s best coating both with respect to configuration and materials. 
Kramer also indicated that there is an optimum value for the viscosity of the damping 
fluid. This is borne out to a limited extent by our results. In  97 it  is shown that an 
increase in viscosity may impair the coatings’ capacity to reduce the growth rate of 
the TSI. On the other hand it is shown that an increase in viscosity leads to a 
reduction in the growth rate of the FISI. 

Let us now consider the design of the test model itself. Kramer apparently designed 
his model (see figure 1 c) with some care. It would be expected that over most of the 
body the pressure gradient would be favourable or close to zero. This in itself is 
conducive to the maintenance of laminar flow. To judge from our results in 97, 
Kramer’s coatings are only marginally capable of delaying transition. Therefore, any 
unfavourable factor, such as an adverse pressure gradient or lack of smoothness where 
the compliant surface is joined to a rigid surface, could badly affect the coating’s 
performance, Similar considerations would imply that conventional water tunnels, 
with their relatively high free-stream turbulence levels, would be unsuitable for such 
tests. Lastly, it  should be noted that Kramer’s coatings were designed for a relatively 
restricted Reynolds-number range and are unlikely to perform well outside this range. 

At least four attempts have been made to carry out tests in order to provide 
independent verification of Kramer’s results. These are reported by Puryear (1962)’ 
Nisewanger (1964)’ Ritter & Messum (1964) and Ritter & Porteous (1965). No 
significant drag reduction was observed in any of the four sets of tests. Each 
investigation will now be briefly considered to see whether or not it met the 
requirements set out above for a successful test. 

Puryear’s (1962) experiments were carried out in a towing tank at speeds up to 
20.5 m/s. He used a coating similar to Kramer’s. He did not specify explicitly the 
elastic modulus of the rubber but used the term ‘high modulus’ to describe it, which 
suggests his coating is likely to be most similar to Kramer’s stiffest coating. The 
models were modified prolate spheroids 2.495 m long with a maximum diameter of 
325 mm; 2.175 m of the total length was covered with the coating, which was filled 
with a lo00 cSt solution of polyethylene oxide (polyox) and water. PIS1 in the form 
of wrinkles were observed at speeds exceeding 18 m/s. The models covered with 
compliant coatings had 2-6 % more drag than the rigid ones. Puryear attributed these 
disappointing results to problems encountered in making a smooth join between the 
rigid nose and the coating. Apparently cavitation and separation frequently occurred 
at the leading edge of the coating. It also appears that the coating being tested was 
not equivalent to the Kramer coating with the best performance. 

The models tested by Nisewanger (1964) were bodies of revolution 3.63 m long in 
total, with compliant coating covering the first metre. The noses of the models were 
made of rubber and were blunt, rather than streamlined. The coatings were reported 
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to be of Kramer ‘ Lamiflo ’ type, but the coating stiffness was not given. Water and 
polyethylene oxide were used as damping fluids; the latter has a viscosity of 2000 cSt. 
Thus it is clear that Kramer’s optimum value for viscosity was not tested. The test 
vehicle was towed to the bottom of a lake and released, whereupon it was propelled 
upwards by its own buoyancy. Speeds of up to 20 m/s were achieved. The results 
were not very consistent, but it appears that the drag of the coated bodies was about 
6 % more than for the rigid body when filled with water, and about 11 yo more with 
polyethylene oxide. FISI were observed at speeds greater than 18 m/s in preliminary 
tests in a towing tank. It seems highly probable that the blunt nose of the model 
would give rise to an unfavourable pressure gradient over much of the compliant 
coating. So it  is perhaps to be expected that this test would be unsuccessful, especially 
since again the coatings being tested were not equivalent to Kramer’s best coating. 

Ritter & Messum (1964) carried out their tests on 305 mm square flat-plate models 
covered with compliant coating. A small flat plate is nc.t really comparable to 
Kramer’s original model so it was, perhaps, not altogether surprising that no 
significant drag reduction was observed. The work was continued by Ritter & 
Porteous (1965), who used a more satisfactory model. The new model was a 4.215 m 
long cylindrical model of 208 mm diameter having an elliptical nose. The tests were 
carried out in a water tunnel having a 762 mm wide working section. The nose was 
fitted to the leading edge of the coated cylinder in such a way that the boundary layer 
could be removed by suction through a slot between the nose and cylinder. This 
arrangement ensured that there was laminar flow at the start of the coated cylinder. 
The coatings tested were selected by Kramer’s collaborators at  the Research 
Laboratory of the U.S. Rubber Co. It is not clear what stiffness the coatings had, 
compared to Kramer’s original coatings. However, Ritter & Porteous state that there 
was a choice of two stiffnesses and they chose the softer rubber. They also reported 
the occurrence of FISI in the form of blisters and humps when the speed exceeded 
14 m/s. Consequently, most tests were carried out at 12 m/s. From a comparison with 
our theoretical results to be presented in Part 2 (see also Garrad & Carpenter 1982 
and Carpenter & Garrad 1982) these observations suggest that they were using a 
coating equivalent to Kramer’s softest coating (D). If so, the fact that their coatings 
failed to yield any significant drag reduction is quite understandable. Also i t  is 
unlikely that the turbulence levels in a water tunnel would be low enough to maintain 
laminar flow far beyond the suction slot at  the join between the nose and the coating. 
Another factor, which possibly had an adverse effect, was the use of water as the 
damping fluid for most of the tests. It must be admitted, though, that the 
performance of Kramer’s coating (D) did not appear to depend significantly on the 
viscosity of the damping fluid in Kramer’s (19604 original tests. Ritter 6 Porteous 
also experienced trouble with the leading edge of the coating on their models. 

From this brief review of the attempts to corroborate Kramer’s original results it 
can be concluded that the Kramer coatings have not yet been subjected to a 
satisfactory independent test. The tests described above certainly should not be taken 
as conclusive evidence that the Kramer coatings are not capable of delaying 
transition under favourable conditions. 

The possibility still remains, of course, that Kramer’s observed drag reductions 
could have been a result of a favourable interaction between the compliant surface 
and a fully turbulent boundary layer. Two additional explanations? have also been 

t The authors are indebted to one of the referees for bringing these explanations to their 
attention. 
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suggested for Kramer’s results. First, the drag reductions could have come about 
owing to favourable changes to the pressure drag. These could conceivably have 
occurred owing to surface discontinuities at the coated-uncoated interfaces and/or 
to a favourable modification of the flow near the rear of the body leading to lower 
base drag. Secondly, there is a possibility that drag-reducing polymeric material, e.g. 
the silicone oil used as the damping fluid, was exuded by the surfaces during the tests. 
If this were the sole explanation, however, it is hard to see why Kramer’s stiffest 
coating (B) should have had a higher drag than the coating (C) with intermediate 
stiffness. 

Before turning to the work on transition, mention should be made of the compliant 
coating tested by Grosskreutz (1971, 1975). This coating can be regarded as an 
extension of the original Kramer design. Grosskreutz’s aim was to design a compliant 
surface which moved in such a way that the product of its normal and longitudinal 
velocities would be positive for all or most of the time. It might be expected that 
the Reynolds shear stress, and therefore turbulence production (or, for that matter, 
the growth of small disturbances in a laminar boundary layer), would be considerably 
reduced near the surface. This idea also follows from Ffowcs Williams’ (1964) analysis 
of the Reynolds shear stress near a flexible surface. Grosskreutz’s coatings were quite 
similar to Kramer’s, except that the stubs were inclined at 45” into the flow 
direction.? The coatings were made of silicone rubber. The models were of flat-plate 
type, measuring 800 x 248 mm; the coatings covered 650 x 204 mm of the surface. 
Tests were carried out in a water tunnel at speeds up to 7 m/s. The best coating 
yielded a 3.6% reduction in momentum thickness at 1.8 m/s but a considerable 
increase occurred for speeds greater than 2.3 m/s. More discouraging, as far as 
confirming the basic concept is concerned, is the fact that the coating performed 
almost as well when the direction of inclination of the blades was reversed. Like 
Kramer, Grosskreutz also found that any favourable effects disappeared when the 
coatings aged. 

Let us now consider experimental observations of the transition process in 
boundary layers over compliant surfaces. There appears to be little information 
available on this subject. Karplus (1963) described experiments with water flowing 
over polyester (mylar) film stretched over various damping fluids. His results are 
different to interpret but appear to show that compared to rigid surfaces small 
disturbances become unstable earlier for flexible walls but their growth rate is lower. 
Mattout (1 972) carried out an experimental investigation of compliant surfaces 
consisting of polyvinyl chloride (PVC) and polyester (mylar) films stretched over 
polyurethane foam. The models were of flat-plate type and were tested in a water 
tunnel. The reported variation of turbulence intensity in the streamwise direction 
indicated that transition sometimes occurred slightly earlier or later for the flexible 
surfaces compared to the rigid control. 

A very thorough experimental investigation of the hydrodynamic stability of 
boundary layers over flexible surfaces has been carried out by Babenko and his 
colleagues at the Institute of Hydromechanics, Kiev, in the Soviet Union. The 
apparatus and methodology were described by Babenko, Gintetskii & Kozlov (1972). 
The experiments were carried out in a low-turbulence (less than 0.05 % turbulence 
intensity) water flow at speeds between 0.05 to 0.15m/s. The growth of small 
disturbances, which were generated at controlled frequencies, was detected by means 

t It is interesting to note that according to Babenko BE Surkina (1964) the dermal papillae of 
dolphin skin are inclined at angles to the flow direction ranging from 15”-80”. 
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of the tellurium technique developed by Wortmann (1953,1969). The experimentally 
determined neutral-stability boundaries for a rigid wall presented by Babenko & 
Kozlov (1973) agree reasonably well with those of Schubauer & Skramstadt (1948) 
and Ross et al. (1970). This confirms that their methods were basically sound. The 
compliant surfaces consisted of either a polyvinyl-chloride (PVC) membrane stretched 
over a cavity filled with water or a cavity containing polyurethane foam with or 
without a polyethylene film stretched over it. The experimental methods used to 
determine the mechanical properties of the compliant surfaces are described by 
Babenko (1973 b). The results for the simple membrane surfaces are given by Babenko 
( 1 9 7 3 ~ )  and those for foam with or without membranes in Babenko & Kozlov (1973). 
The best results were obtained with a flat strip of polyurethane foam without a 
tensioned membrane. In  this case the critical Reynolds number was approximately 
doubled and the amplification rate halved, compared to the rigid wall. The addition 
of a tensioned membrane increased the region of instability compared to the rigid 
wall. For the simple membrane surfaces, Babenko found that the critical Reynolds 
number was not greatly different from the rigid-wall value, but an increase in cavity 
depth and membrane tension tended to increase the region of instability. 

Owing to the well-documented information on the surfaces we were able to use our 
theoretical methods to predict the neutral curves for some of Babenko’s simple 
membrane surfaces. The results are shown in figure 10 and discussed in 57.3. The 
theoretical neutral curves for Babenko’s flexible surfaces are almost indistinguishable 
from those corresponding to a rigid wall. It must be pointed out, however, that, for 
the values of Reynolds numbers involved, the neutral curve for the rigid wall obtained 
using linear stability theory bears little resemblance to the experimental results. It 
is also true, of course, that this part of the neutral curve is not really relevant to the 
transition process, which involves small disturbances of considerably longer 
wavelengths a t  higher Reynolds numbers. So for this reason Babenko and his 
colleagues have not really provided any direct information on the transition process 
over compliant surfaces. 

2.3. Stability analyses of boundary layers over compliant surfaces 
We will confine ourselves to reviewing the literature concerned with linear stability 
analyses of boundary layers over compliant surfaces. A more extensive review 
covering some of the same ground was given by Richards (1968), while a far more 
wide-ranging discussion of related topics can be found in an excellent review by 
Benjamin (1964). A very comprehensive review is also given by Bushnell & Hefner 
(1977) who discuss theoretical analyses of turbulent boundary layers on compliant 
surfaces as well as stability analyses and other topics. 

The effects of a flexible boundary on hydrodynamic stability were first studied in 
depth by Benjamin (1960) who provided the foundations for much of the subsequent 
work. He pointed out that the motion of the flexible surface would be likely to change 
radically the thin friction layer at the wall. Since the destabilizing action of viscosity 
on TSI is generated in this friction layer, then surface flexibility could very well have 
a favourable effect on boundary-layer stability. 

Benjamin showed how the boundary conditions a t  the wall could be formulated 
for the case of a flexible surface with predominantly normal motion. (This is by no 
means a trivial step since some subsequent investigators have used an incorrect form 
of the no-slip condition.) The response of the flexible surface to the pressure generated 
by the fluid motion was characterized by introducing a response coefficient (a complex 
compliance) Z which corresponds to the surface deflection due to a pressure wave of 
unit amplitude. 



The stability of Jlows over Kramer-type compliant surfaces 475 

Re 

FIGURE 4. The effect of surface compliance on the neutral curve for a non-dissipative flexible wall 
according to Benjamin’s theory : a is wavenumber; 6* is boundary-layer displacement thickness; 
and Re is Reynolds number based on 6*. 

By means of an ingenious, but remarkably simple, extension of the conventional 
linear stability theory of Tollmien (1929), Schlichting (1933) and Lin (1945), 
Benjamin was able to show how a flexible non-dissipative wall will tend to stabilize 
TSI which have phase velocities lower than c,, the velocity of free waves on the 
surface. When 2, > O t  the neutral curves are shifted to lower wavenumbers and 
higher Reynolds number, as shown in figure 4. In  the case of dissipative flexible walls 
he showed that internal damping destabilizes TSI. A similar conclusion was 
independently reached by Betchov (1960) (see also Betchov & Criminale 1967). 

Benjamin also pointed out that for flow over flexible surfaces other modes of 
instability could be excited in addition to TSI (classified as Class A waves). The 
additional instabilities were surface waves which could occur even with an inviscid 
fluid flow. Class B was a surface-resonance type of instability and comprised waves 
travelling at  velocities close to the free wave speed of the surface. Class C instabilities 
were of Kelvin-Helmholtz type, e.g. the flutter instability caused by the coalescence 
of two modes, which is familiar to aeroelasticians. In  the light of Landahl’s (1962) 
analysis the classification scheme was later made more precise by Benjamin (19631, 
with respect to the surface waves generated by inviscid flows. Further discussion of 
the flow-induced surface-wave instabilities is postponed until Part 2. 

On the basis of his analysis, Benjamin considered that two distinct types of flexible 
wall may have a significant stabilizing effect on the boundary layer. The first type, 
which could be called a resonant surface, should be so designed that c,  is close to  the 
phase speed of the fastest-growing Class A instability. In this case both Class A and 
B waves would have similar phase speeds and may interact in such a way as to have 
a favourable effect on the wall friction layer. Kramer’s coating was thought to be 
of this type. The second type, which could be termed a compliant surface, would have 
to be flexible enough to have a fairly large negative value of 2, but, at the same time, 

t The imaginary part of 2 is zero for a non-dissipative wall. 
16 F1.M 155 
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have little internal damping. I n  this way stabilization of Class A instabilities would 
be achieved. However, co would have to be large enough to  avoid Class B instabilities. 

The response of the flexible surface was characterized by Landahl (1962) as an 
admittance, defined as 

= -normal wall velocity 
wall pressure 

The concept of admittance was borrowed from acoustics. This formulation does not 
have any real theoretical advantage over that  of Benjamin. However, i t  is also used 
in the present paper since it is convenient for numerical work. Landahl’s theoretical 
approach makes i t  possible to  determine, relatively simply, whether a particular 
change in the mechanical properties of the wall will be stabilizing. This feature is 
exploited in $5. Landahl attempted to simulate in an  approximate fashion the 
principal properties of a Kramer-type coating, and obtained neutral curves numer- 
ically. The neutral curves tended to have two branches. He confirmed Benjamin’s 
conclusion with regard to  the destabilizing effect of internal damping on TSI (Class A) 
and considerably clarified matters as regards the effects of damping on the various 
types of instability. Concerning Kramer’s coating he concluded that, since the 
theoretically predicted critical Reynolds numbers were at best only modestly 
improved by wall flexibility, i t  was unlikely that the drag reductions observed by 
Kramer were a result of delaying transition. The fact that Kramer’s best results were 
obtained with a highly viscous damping fluid was held to be further evidence for this 
view. 

Landahl’s theory was used by Gyorgyfalvy (1967) to carry out an extensive 
parametric study of stability and transition of boundary layers over spring-backed 
membranes with internal damping. The e0 method of Smith & Gamberoni (1956) was 
used to calculate the transitional Reynolds number based on displacement thickness. 
Gyorgyfalvy found that, when a flexible surface had a favourable effect on transition, 
it was because of a reduction in amplification rates rather than increase in critical 
Reynolds number. The potential drag reduction was estimated to be up to 90% in 
water flows. Large reductions were only available for a comparatively small range 
of Reynolds numbers, however. Gyorgyfalvy ’s results appeared to  confirm Landahl’s 
views on the theoretical unsuitability of Kramer’s coatings for delaying transition. 

The formulation of the wall boundary conditions was extended by Landahl & 
Kaplan (1965) t o  cases where the surface velocity could have a significant streamwise 
component, by introducing an additional surface admittance for the streamwise 
motion. The Orr-Sommerfeld equation was integrated numerically, which allowed 
accurate solutions to  be obtained for a variety of problems. I n  addition to  spring-backed 
membranes, compliant surfaces formed by a non-dissipative elastic medium (Kaplan 
1964)t and by a viscoelastic medium (Voight body) were studied. The effects of 
pressure gradient on boundary-layer stability over flexible surfaces were also 
investigated, and the effect of a flexible surface on the secondary instabilities was 
briefly studied. It was found that a flexible wall would noticeably, but only slightly, 
reduce the growth rate of the secondary instability. This confirmed a similar 
conclusion reached by Benjamin (1964) using a simpler flow model. The conclusions 
reached regarding spring-backed membrane surfaces with internal damping were 
similar to  those mentioned above, reached later by Gyorgyfalvy (1967). It was 
considered that in order to have a significant favourable effect on transition the use 

t Most of the other material in Kaplan (1964) appears in Landahl & Kaplan (1965). 
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of a light, highly flexible wall would be necessary. Our own calculations (see $7.2) 
have placed some doubt on Landahl & Kaplan’s results for spring-backed membrane 
surfaces. Their overall conclusions for these surfaces appear to be sound, however. 

Some other contributions to hydrodynamic-stability theory for flow over flexible 
surfaces will now be briefly considered. Nonweiler (1961) investigt&d flows over 
non-dissipative elastic walls. Korotkin (1966) developed an alternative formulation 
of the problem to those of Benjamin, Landahl and Kaplan. His formulation allowed 
for both normal and tangential compliance but unfortunately the no-slip condition 
appears to have been incorrectly implemented. Amongst other things Korotkin 
investigated the effects of a streamwise pressure gradient. Amfilokhiev, Droblenkov 
& Zavordkhina (1972) used Korotkin’s approach to calculate amplification rates and 
predict transitional Reynolds numbers. Their conclusions were qualitatively in 
agreement with those of Gyorgyfalvy. 

Conventional linear-stability theory has been used for almost all the work reviewed 
above. Bushnell & Hefner (1977) have questioned the validity of this approach for 
flows over Kramer-type flexible surfaces. They argued that the modulation produced 
by such a wall can be sufficient to alter significantly the effective-mean-velocity 
profile. Accordingly they advocate the use of stability analysis for periodically 
time-varying mean flows. It seems to us that their argument would only be valid if 
the wall motion were independent of the instability under consideration. This would 
clearly be so in the case of active walls. For passive walls, on the other hand, this 
situation would only arise if the effects of a PIS1 on TSI were considered. Two main 
types of behaviour would seem to be possible, i.e. either the two modes of instability 
would be well separated and distinct or some sort of first-order modal interaction 
would occur (as in Benjamin’s concept of the resonant wall, for example). 

In the first case, provided that the amplitudes of the separate instabilities are small 
enough for linearization to be valid, the instabilities could be treated independently 
and superposed to give their combined effect. It is certainly possible that any 
interaction between the two modes of instability could be strongly stabilizing or 
destabilizing.? However, such an interaction would be a nonlinear higher-order effect. 
If a first-order interaction occurs leading to the coalescence of the modes, for instance, 
then clearly the situation is much more complex. However, provided linearization 
remains valid, there would appear to be no obvious reason why conventional linear 
theory cannot be used to investigate such interactions. Certainly, it is difficult to see 
what would be gained by the application of stability analysis for periodic flows. 

In summary, then, the current theoretical evidence seems to indicate that it is 
possible to postpone transition by using a compliant surface but the Kramer coatings 
are not of a suitable design for this purpose. Moreover, it seems to be firmly 
established that internal damping destabilizes TSI. So Kramer’s explanation for the 
action of the damping fluid would appear to be incorrect and its true role remains 
obscure. With regard to these conclusions two points need to be made. First, there 
has been a tendency in the past to regard the Kramer coatings as spring-backed 
tensioned membranes. In our view (see the next section) they are better modelled 
aa spring-backed plates with finite bending stiffness. With this sort of model a fairly 
substantial delay in transition is possible under certain circumstances according to 
our theoretical results (see $7.4). Secondly, in much of the previous work attention 

t It is interesting to note that in a recent study of the influence of surface compliance on the 
production of sound by a turbulent boundary layer Howe (1983) has shown that a similar sort of 
higher-order interaction produces powerful additional noise sources in flows over Gamer-type 
surfaces. 
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has been focused on the TSI only, whereas in many cases there are two or more modes 
of instability present. Lastly, internal damping has hitherto been characterized by 
a constant damping coefficient. For an actual compliant coating, however, the 
damping is due both to viscous effects in the substrate fluid and to the viscoelastic 
properties of the solid part of the coating. It is not clear what value should be assigned 
to the damping coefficient in order to model the effects of a substrate fluid of given 
viscosity and/or a solid material of given viscoelastic properties. Moreover, since the 
damping properties of a viscous fluid substrate and a viscoelastic material actually 
vary with frequency and wavelength, it is evident that the use of a constant damping 
coefficient will not model the real damping properties completely satisfactorily. 

These points have been borne in mind in developing the theoretical model for the 
compliant coating presented below and in applying the present theoretical methods. 

3. Theoretical model for the compliant surface 
3.1. Description of model 

A fairly general theoretical model for a compliant coating is illustrated schematically 
in figure 5. It consists of an elastic plate (or tensioned membrane) supported above 
a rigid surface by an array of springs. The plate is backed by a fluid substrate which, 
in general, has a different density and viscosity from the main flow. It is assumed 
that the effect of the springs on the motion of the plate can be modelled by a 
continuous elastic foundation, of stiffness K. This should be a reasonable approxim- 
ation provided that the wavelength of the surface instabilities considerably exceeds 
the distance between neighbouring springs. It is also assumed that the presence of 
the springs has a negligible effect on the motion of the substrate fluid. This theoretical 
model should be applicable to many of the compliant surfaces previously studied, 
including those of Kramer. 

If such a surface undergoes two-dimensional disturbances the motion of the surface 
will be governed by the following equation (see, for example, Kornecki 1978) : 

where w is the surface displacement, pm, pe and ps are respectively the densities of 
the plate material, main flow and substrate fluid, b is the plate thickness, d is a 
damping coefficient, B is the flexural rigidity of the plate, T is the longitudinal tension 
per unit width, and K is the spring stiffness per unit width. Sp, and Sp, are, 
respectively, the perturbations in dynamic pressure acting on the plate from above 
and below. The perturbations in hydrostatic pressure are included in the last term 
on the left-hand side of (3.1) since it is convenient to introduce an equivalent spring 
stiffness defined as 

KE = K-dpe-Ps) .  (3.2) 
The flexural rigidity is given by 

Eb3 
B =  

12( 1 - VZ) ’ (3-3) 

where E and v are respectively the Young’s modulus and Poisson’s ratio of the plate 
material. 

For a travelling-wave type of disturbance the surface displacement takes the form : 

w = wo exp{ia(x-ct)}, (3.4) 
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U Elastic plate 

Viscous fluid substrate Array of springs Rigid surface 

FIQURE 5. A schematic illustration of the theoretical model for a compliant coating. 

where a is the wavenumber and c is the complex wave speed. Let the corresponding 
expressions for the dynamic pressure perturbations be given by 

ape = ~e vrn @e @ and Sp, = Pe Vfw $s W, (3.5) 

where U ,  is the free-stream speed and W = w/S*. If (3.4) and (3.5) are substituted 
in (3.1) and both sides divided by pe Vf, @, (3.1) can be written as 

- Z V C M  - i&7CD + E4CB + Z2CT + C,, = $s -@e. (3-6) 

Here i?i and Fare non-dimensional wavenumber and complex wavespeed, respectively, 

i?i=aS* and F=-. 

The non-dimensional coefficients describing the mechanical properties of the coating 

(3.7) 
defined by C 

urn 

In order to obtain solutions to  the Odommerfe ld  equation (see 94) it is necessary 
to use (3.6) to obtain an expression for the surface admittance. Before this can be 
done an expression must be derived for the non-dimensional substrate pressure, @,. 

Elastomeric materials are used for the plates (or membranes) and/or spring 
foundation of most compliant surfaces. Consequently, it is necessary to take the 
viscoelastic nature of the materials into account in order to obtain a realistic model. 
Suppose that the behaviour of the material can be reasonably approximated by the 
Standard Linear Solidt model, i.e. the stress u and rate of stress 13 are related to the 
strain E and rate of strain E as follows : 

a,u+a,d = b,E+blE, 

where a,, a,, b, and b, are constants. Let us consider a rod of this material subjected 
to a sinusoidally varying direct stress so that u - e-iwt and E - e-i". Then from the 
constitutive equation given above it can be seen that 

(a, - iwa,) v = (b, - iwb,) E .  

t This is the most general of the classical models, but the arguments given above apply equally 
well to the much more general constitutive equations first studied by Alfrey (1944). 
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This relationship between stress and strain can be formally regarded as equivalent 
to the introduction of a complex elastic modulus E* such that 

E* = E(l -i7), 7 = I E:/E,* I ,  (3.9) 

where E: and E,* denote respectively the imaginary and real parts of E*. The symbol 
E is retained for E,* and the loss factor 7 is introduced. Experimental data are readily 
available giving the variation of E and 7 with frequency and temperature for many 
elastomers. 

If it is assumed that both B and K are proportional to E* then C, and C,, in (3.6) 
can be replaced respectively by Cs( 1 -iq) and CKE(l -iq'), the loss factors 7 and 7' 
being different, in general, in order to take account of the contribution of hydrostatic 
pressure perturbations and possible differences in material. 

3.2. Derivation of an expression for substrate pressure 

Since the motion of the substrate fluid is due solely to the motion of the plate, which 
arises from the small disturbance, it can be assumed that the velocities are low. This 
allows the Navier-Stokes equations to be linearized, giving 

(3.10) 

(3.11) 

where us and v, are the velocity components in the x- and y-directions respectively, 
and pus is the dynamic viscosity of the substrate fluid. 

A stream function for the substrate fluid motion is introduced having the form 

+, = F,(Y) exp {ia(x - 4 1 ,  (3.12) 

so that U, = - all., - - Fi(y) exp{ia(x-ct)} (3.13) 
a Y  

and v = -- all.,- - -iaF,(y) . exp{ia(x-ct)}. (3.14) 

Equations (3.13) and (3.14) are substituted into (3.10) and (3.11), and ps is then 
eliminated by cross differentiation to obtain the following fourth-order ordinary 
differential equation for Fs : 

ac(F~-a2F,)-iV,(a4Fs-22a2F~+FI,V) = 0. (3.15) 

Equation (3.15) is, in fact, the Orr-Sommerfeld equation with the mainstream 
velocity set equal to zero. The general solution to (3.15) is given by 

Fs = A,  eaY+ A ,  e-L?LY+A3 eBY+ A,  e--BY, (3.16) 

s ax 

where 

The boundary conditions are 
aw 
at 

u,=O and v,=- at y=O,  

(3.17) 

(3.18) 

us = v, = 0 a t  y = - H .  I 
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Here, it is assumed implicitly that any streamwise motion of the compliant surface 
is negligible, and hence us = 0 a t  y = 0. From (3.4), (3.13) and (3.14) it  can be seen 
that (3.18) are equivalent to 

(3.19) Fs(0) = two, Fi(0) = Fs( - H )  = Fi( - H )  = 0. 

The constants of integration A, etc. can be evaluated by applying conditions (3.19) 
to the expression (3.16). 

Substitution of (3.13), (3.14) and (3.5) with (3.4) into equation (3.10) gives, after 
rearrangement, the following expression for the dynamic pressure perturbation at the 
compliant surface : 

(3.20) 

With the use of boundary conditions (3.19) and equation (3.16) it can be shown that 

(3.21) 

A, and A, may be evaluated by applying the boundary conditions (3.19), as explained 
above, to give 

where p = /3S* and g =  HIS*. 

This expression can be substituted for f is  in (3.6). It can be seen that in general the 
relationship between 9, and c is fairly complex. There are two simpler special cases, 
however. 

If vs+O then (3.22) reduces to 

This is the appropriate form for an inviscid substrate fluid. 
If H+O for fixed us then (3.22) reduces to 

1 2iti2ps c 
A = S*pe Vm(ER)3< 

(3.23) 

(3.24) 

Equation (3.24) is a fair approximation for small substrate depths and high 
viscosities. It can be seen from its form that under this small depth approximation 
the effect of a viscous fluid substrate is equivalent to a conventional damping term 
of the form daw/at in (3.1). The equivalent damping coefficient takes the form 

(3.25) 

With d evaluated according to (3.25), $, can be replaced by a term of the form i&-C, 
in (3.6). 

3.3. Evaluation of parameters for Kramer coatings 
Kramer's tests were carried out in the sea. The temperature of the water was not 
given, but must have been about 10 "C, to judge from the value of 1.37 x m2/s 
for the kinematic viscosity which may be deduced from the values he cites for 
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Reynolds number. The density of sea water is about 1025 kg m-3. The damping fluids 
used were silicone fluids, the density of which rises slightly with their nominal 
viscosity. For a nominal viscosity of 300 cSt (the optimum value for Kramer's best 
coating) the density is about 970 kg m-3 according to Meals (1969). The viscosity of 
such fluids varies very markedly with temperature according to the Walther 

(3.26) 
equation, namely 

lOglog(v+O.8) = A logT+C. 

In (3.26) v must be expressed in cSt and the temperature T in  degrees Rankine. The 
constants A and B for a nominal viscosity of 300 cSt at 25 "C may be obtained by 
interpolation from Meals' figure 3. In  this way a value of 450 cSt corresponding to 
10 "C was obtained from (3.26). So for Kramer's best coating the following non- 
dimensional ratios are obtained : 

Ps V 
- = 0.946, 
Pe V e  

2 N 335. 

The above value of ps/pe is used throughout but values of the viscosity ratio vary. 
Kramer (1962) states that the softest natural rubbers available for manufacturing 

his coatings had an elastic modulus of about 0.4 N mm-2. It also appears from the 
information given in this later paper that the hardest of the three rubbers used for 
his original coatings had an elastic modulus of about 1 .O N mm-2. The values of the 
coating stiffnesses were obtained by using an indenter type of instrument which 
measured the depth of deformation due to an applied point load. With this type of 
test it would be expected that most of the point load would be supported by a single 
stub, in which case the elastic modulus would vary linearly with coating stiffness. 
Assuming that the lowest coating stiffness of 0.167 N mm+ quoted by Kramer 
corresponds to E = 0.4 N mmP2, we obtain the relationship 

(3.27) 

In this way the values of E given in table 1 are obtained for Kramer's three coatings 
(see figure 3). The fact that the predicted value of E for the stiffest coating (B) 
corresponds closely to the highest value available for E suggests that (3.27) is fairly 
accurate. 

As suggested above, the coating stiffness measured by Kramer corresponds, 
roughly at  least, to a nominally point load which is largely supported by a single stub. 
However, this is not the appropriate way to calculate the stiffness for a relatively 
long-wave sinusoidal periodic pressure perturbation. In this case it can be assumed 
that the pressure acting on the surface is supported by a large number ofstubs. From 
the geometric parameters given in figure l ( b )  it can be calculated that the total 
cross-sectional area of the stubs is 1/(4.4) times the total surface area of the coating, 
so that it can be estimated that the pressure supported by the stubs is 4.4 times the 
surface pressure. Given that the undeformed height of a stub is 1 mm, i t  follows that 
the spring stiffness is given by 

E(in N m-2) = 2.395 x x (coating stiffness in N m-3). 

El 
I3 

= 230E N m-3. 
4.4 x 10-3 

K =  

Note that the values of stiffness given in table 1 are almost half those given in (3.28). 
For natural rubber the density is about 945 kg mP3 and the Poisson's ratio is close 

to 0.5. From figure 1 ( a )  i t  can be seen that the plate thickness b = 2 mm. Thus from 

B = 8.9 x 1OP1O x E N m. (3.3) we obtain 
(3.291-t 

t The units of E are N m-2 in these formulae. 
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Kramer’s measured Elastic modulus 
Coating coating stiffness (from (3.27)) 

(see figure 3) (N mm-s) (N mm-a) 

B 
C 
D 

0.434 1.04 
0.217 0.52 
0.167 0.40 

TABLE 1. Values of coating stiffness and elastic modulus for Kramer’s surfaces 

104 109 

1oJ 10’ 

10’ 10 

11 E, 
10 1 

1 lo-’ 

lo-’ lo-’ 
- 2  0 2 4 6 8 10 

log (ma,) 

FIQURE 6. The variation of storage elastic modulus and loss factor with a combined frequency- 
temperature parameter for unvulcanized natural rubber. (Based on figure 3 of Payne 1958) : -, 
E,/E,,; ---, 7; lopa, = -8.86(2’-273)/(2’-171.4). 

Kramer makes no mention of any tension being applied to the coatings, so it is 
assumed that only sufficient tension is applied to keep the coating firmly and 
smoothly attached to the rigid part of the model. Consequently, for calculations we 
take T = 0. 

The maximum speed for Kramer’s tests was 18 m/s and this is the value of U ,  
used for most of the calculations. Some calculations are also carried out for 15 m/s. 

The plate and the springy stubs in Kramer’s coating are both made of the same 
rubber. Also the contribution of hydrostatic pressure perturbation to K ,  in (3.2) is 
negligible compared to K and so in this case the loss factors 7 and 7’ are identical. 
It is difficult, however, to assign any numerical value to 7. A typical variation of 
storage modulus and loss factor with frequency for natural rubber is shown in figure 6, 
based on figure 3 of Payne (1958). It can be seen that both quantities vary strongly 
with frequency. Figure 6 corresponds to a rubber having a nominal storage modulus 
of E x 3.0 N mm-2 which is considerably stiffer than Kramer’s coating B. The curves 
illustrated in figure 6 vary considerably from one type of rubber to another, so they 
are not very likely to correspond at all closely to the curves appropriate for the 
rubbers used by Kramer. Unfortunately, Kramer only characterizes the internal 
(viscoelastic) damping of his coatings by quoting values for what he termed relative 
damping. These values were obtained by dropping a 13 mm diameter piston weighing 
14 g onto the coating from a height of 51 mm and measuring the height of rebound. 
The relative damping was defined as the ratio of the rebound height to the original 
height. Even if it were feasible to deduce a value of loss factor from the value of 
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relative damping, which i t  is not, this would still only yield a value for a single 
frequency at best. Thus we are faced, essentially, with choosing either to use the 
variations shown in figure 6, which is perfectly feasible with our approach to the 
problem, or simply to take fixed values of E and 7 and examine the effect on 
hydrodynamic stability of changing these values. We chose’ the latter approach. 

4. Formulation of the boundary-layer stability problem 

sional and is described by a stream function which takes the form 
Following the usual procedure, it  is assumed that the perturbation is two-dimen- 

$e(x, Y, t )  = 6* u, $ ( J )  exp W x -  ct)}, (4.1) 

where x and y are the streamwise and normal coordinates respectively, t is time, S* 
is the boundary-layer displacement thickness, U ,  is the free-stream velocity and 
&!= y/6*. The dimensionless disturbance amplitude $ is obtained by solving the 
Orr-Sommerfeld equation, which takes the form 

q5iv - 2Z2$” + Z4q5 + iZ Re { (C - g) (4’’ - E2$)  + U”$} = 0, (4.2) 

where Z = &*a, Re = U ,  S*/we, F = c / U , ,  we is the kinematic viscosity of the 
boundary-layer fluid and U ,  V(J)  is the mean flow velocity in the boundary layer. 

The boundary conditions at  the outer edge of the boundary layer are the same for 
both rigid and flexible surfaces. The two fundamental solutions of (4.2) which decay 
asy+co are given by exp (-Ey) andexp ( - p ,  jj) for y 2 3 where% = E 2 +  iZ Re (1  -C),  
real part of PI, (PI), > 0. The appropriate boundary conditions are determined by 
the form of these fundamental solutions. Because of the numerical methods used for 
the present work it is convenient to put these boundary conditions in the form 

I (D+E)  (D2-p;)$(3) = 0, 

(D+pl) (D2-Z)$(3) = 0, 
(4.3) 

where D denotes dldy. The application of these boundary conditions at gj = 3 follows 
from the fact that at a distance of just under 3S* from the surface of a flat plate 
0 = 0.99 (for example, see Schlichting 1968) and therefore, to a good approximation, 
potential flow can be assumed for Cj > 3. 

In  the case of the rigid wall the boundary conditions a t  the wall are given by the 
requirements of zero normal velocity and no slip. This gives 

$(O) = 0, q5’(0) = 0. (4.4a, b)  

For a flexible surface, particularly the types studied in the present paper, i t  is still 
reasonable to assume that the no-slip condition holds. Let the non-dimensional 
surface deformation be given by 

(4.5) w=-= Go exp{ia(x-ct)}. 

Similarly, let the streamwise and normal velocity components and pressure be given 

- w  
6* 

u, = U ,  iie = U ,  &,(y) exp{ia(x-ct)}, (4.6a) 

ve = U ,  V, = U ,  exp {ia(x-ct)}, (4.66) 

( 4 . 6 ~ )  P, = ~e Vi P, = Pe UZ, $e(Y) exp {idx-ct)}, 

where pe is the density of the boundary-layer fluid. 
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It is easy to show (e.g. see Benjamin 1960 or Landahl 1962) that the no-slip 
condition implies that 

$ ( O )  P ( O ) + E $ ’ ( O )  = 0 .  (4.7) 

Following Landahl(l962) and Landahl & Kaplan (1965) the concept of admittance 
is introduced, where 

normal velocity 
applied pressure ’ 

y = -  

At the flexible surface the pressure and normal velocity of the boundary-layer fluid 
must be the same as those in the flexible medium. So at the surface # = 0, 

Yo = Yl (4.9) 

where Yo and Yl are, respectively, the admittances of the boundary-layer fluid and 
flexible surface. When suitable expressions are derived for Yo and Yl, (4.9) acts as 
the fourth boundary condition at the flexible wall, replacing the condition ( 4 . 4 ~ )  used 
for the rigid wall. 

Landahl (1962) showed that a suitable expression for Yo can be derived from the 
linearized x-momentum equation. In the case when the no-slip condition (4.7) holds, 
his expression takes the form 

5 (0) --a2 Re$(O) yo = -+ = 
pe(0) $“(O) -E2$’(0)’ 

The admittance for the flexible surface is given by 

(4.10) 

(4.11) 

which, with use of (3.4), (3.5) and (3.6), can be written as 

(4.12) 

@, is evaluated by using (3.22) and, when the viscoelastic properties of the plate and 
springs are taken into account, CB and CK,  are multiplied by (1 -7) and (1 -7’) 
respectively. 

iEd 
= 9 s  + g 2 ? c M  -k iE%D- z4i“cB- z2cT- c K E *  

5. Approximate theory 
The approximate theory presented in this section is based in part on the method 

devised by Landahl (1962) for determining the optimum surface properties of 
compliant surfaces. Its main purpose here is to determine whether making a 
particular change to the mechanical properties of.the flexible surface is likely to be 
stabilizing or destabilizing. 

The free-wave speed of the type of flexible surface under consideration is given, 
in the most general form, by 

aeB + T + KE/aZ  
co = { bp, 

So the non-dimensional free-wave speed can be defined as 

co = (“ICB + c;: c,, 5- 
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._ 
1c 

Yo+- = 0. 
aC,(G-c?)-iCC,-$,/Z (5.3) 

Let the unperturbed state correspond to a flexible surface with no fluid substrate 
and no damping, so that C, = $, = 0. Also let the unperturbed state be neutrally 
stable with C = a (a is real). In  the most general case it is assumed that a slight 
departure from this unperturbed state comes about because of small changes to the 
mechanical properties of the surface (so that small changes occur to C, and c",), and 
by introducing a fluid substrate and damping (so that C, and$, are small quantities). 
These small changes will bring about a small change in complex-wave speed, so that 
in the perturbed state 

where I AEJ 4 a. 

C = a + A E ,  (5.4) 

For the perturbed state, (5.3) can be written as 

(5.6) 
where E = zA(CMc",)-&Z2ACM-iaCD--_ Ai 

a 

and A(CM c",) and ACM denote the small changes in C ,  3 and C ,  respectively. E is 
an overall small parameter encompassing all of the various small changes possible 
in the properties of the flexible surface. Using (5.3), applying the binomial theorem 
to the denominator of the last term on the right-hand side of (5.5) and neglecting 
higher-order terms, (5.5) can be rearranged to give 

(5.7) 

The main purpose of this approximate theory is to determine whether a certain 
small change to the properties of the flexible surface is destabilizing or stabilizing. 
This information can be obtained by using (5.7) to determine the sign of ACi (the 
imaginary part of AC). From (5.7) we find that the sign of ACi is given by 

where eR and sI are the real and imaginary parts, respectively, of E and R, and I ,  
are the real and imaginary parts, respectively, of (a Y0/aC),,. The sign of R, and I, 
can be deduced approximately from figure 5 of Landahl (1962), which shows that 
R ,  2 0 and I, < 0 for the range of C involved in TSI on rigid surfaces. 

A number of special cases will be considered below. 

Effects of changing free wave speed or plate mass 

Suppose that the flexural rigidity, tension or spring stiffness is reduced keeping the 
mass of the plate (or membrane) fixed. In this case A (C, Co) < 0 and ACM = 0. SO, 
provided there is no damping and no fluid substrate, i t  follows from (5.6) that sR < 0 
and eI = 0. In this case (5.8) implies that ACi < 0 (i.e. stability) provided Eo > a and 
R, > 0. Both of these conditions are satisfied for TSI on Kramer-type flexible 
surfaces (and probably on most other compliant surfaces also). Thus it can be 
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concluded that a reduction in flexural rigidity, tension and/or spring stiffness, 
keeping plate mass fixed, has a stabilizing effect on TSI. Conversely an increase in 
any of these quantities is destabilizing. 

On the other hand, a similar analysis to the one given above shows that a reduction 
in C,, keeping $C, fixed, has a destabilizing effect on TSI. At first sight this 
conclusion would seem to contradict the oft-repeated statements of Landahl & 
Kaplan (1965), Gyorgyfalvy (1967) and others that a low relative mass is one of the 
principal requirements for a compliant surface capable of delaying transition. In  fact, 
the present conclusion is in agreement with the results illustrated in figure 7 of 
Landahl(l962). This figure shows that the optimum value of C, (which corresponds 
to Landahl's mass parameter denoted by m )  is infinite for the case of zero damping. 
The introduction of fairly light damping, though, drastically reduces the optimum 
value of C ,  according to Landahl's results. It is worth pointing out, however, that 
a substrate fluid of low viscosity (e.g. water) can be used for Kramer surfaces. In  this 
case our results (see 57.3) indicate that the surface behaves almost the same as one 
with an inviscid fluid substrate. In  practice, of course, it is not possible to raise the 
mass of the plate indefinitely without increasing the flexural rigidity, which has a 
destabilizing effect. Presumably it is the trade-off between these two effects which 
determines the optimum value of C ,  in practice. 

Effect of an inviscid fluid substrate 
Suppose that the mechanical properties of the plate (or membrane) and spring 

foundation remain unchanged, but an inviscid fluid substrate is introduced. In  this 
case, using (3.23) with (5.6), 

so that eR < 0 and eI = 0. As before this implies that Ac, < 0 so an inviscid substrate 
fluid has a stabilizing effect on TSI. 

Effect of a viscous fluid substrate 
In  general, for a viscous fluid substrate, (3.22) should be used for $s. It would, 

however, be a tedious, and ultimately unrewarding, task to split (3.22) into its real 
and imaginary parts. Consequently, the simple approximate result (3.24) will be used 
instead. In  this case 

(5.10) 

so that eR = 0 and eI < 0. This is exactly analogous to the effects of conventional 
damping (i.e. C, 8 0) which Benjamin (1960), Landahl(l962) and others have found 
hw a destabilizing effect on the TSI. Using the present procedure, it  can be seen that, 
of the three terms in the large brackets on the right-hand side of (5.8), the first is 
equivalently zero, the second is positive and the third is negative. Therefore, the sign 
of AE, depends on the relative magnitude of the last two terms. If E, % a (a good 
approximation for TSI) the last term reduces to e I / { a ( C M $ } .  It can be seen from 
figure 5 of Landahl (1962) that I, lies between about -0.7 and - 1.0 while for 
Gamer's best coating EC, c;4 is about 5.0.t So, in this case at lerwt, I I, I exceeds 
{SC, C",}-l by a substantial margin and AEi > 0. This seems to be generally true for 

t S waa used &B reference length in these estimates instead of S*. 
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the TSI, so it follows, in agreement with previous results, that conventional 
damping and viscous substrates destabilize the TSI. 

will be very small, implying AEi < 0, but in these 
cases the surface will be highly unstable to the FISI. Damping will also have a 
stabilizing effect when 1 G -aa I 4 1. This condition is typical of the travelling-wave 
flutter FISI for which damping is, indeed, stabilizing (see results in 97.4). 

Effect of viscoelastic damping 
To allow for viscoelastic effects a complex elastic modulus is introduced (see $3.1). 

In effect, this means that C, and CKE are replaced by C,(1 -ir) and CKE(1 -iq') 
respectively. If it is assumed that the real parts of these complex terms remain 
unchanged then 

For very flexible surfaces ZCM 

(5.11) 

So, viscoelastic damping has an analogous effect to viscous and conventional 
damping. 

Travelling-wave putter FISI 
It must be emphasized that the above conclusions, with regard to the effects of 

various changes on the instability, apply only to TSI. An approximate theory for the 
travelling-wave flutter FISI will be presented in Part 2;  generally, it will be found 
that any effect which stabilizes the TSI will destabilize the travelling-wave flutter 
mode. 

6. Numerical methods 
6.1. Numerical integration of the Orr-Sommerfeld equation 

The Orr-Sommerfeld equation (3.2) is a fourth-order linear ordinary differential 
equation with variable complex coefficients. The fact that the coefficients are complex 
is of little consequence. It simply means that for the purposes of numerical integration 
the equation is recast as eight, rather than four, first-order differential equations. The 
main numerical difficulties in integrating the Orr-Sommerfeld equation come about 
because it is highly stiffly unstable. Owing to the stiffness one fundamental solution 
changes very rapidly relative to another, as is well known from the asymptotic 
analytical solutions (see Lin 1945, for example). This highly stiff, and also unstable, 
characteristic makes the use of conventional numerical schemes impossible. 

Two interesting and informative papers have been written by Gersting t Jankowski 
(1972) and Gersting (1980) on numerical methods for the Orr-Sommerfeld equation. 
After assessing the information given in these papers we decided to try two numerical 
schemes specially developed for stiff equations. The two methods are due to Gear 
(1971) and Scott 6 Watts (1975). We had little success using a standard variant of 
Gear's method but found Scott t Watts' scheme, SUPORT, satisfactory provided 
modal interactions did not occur. SUPORT was used to obtain all the results 
presented below. 

The basis of SUPORT is a variable-step RungeKutta-Fehlberg integration 
scheme designed for the solution of two-point boundary-value problems. It uses 
superposition coupled with an ortho-normalization scheme. Each time the super- 
position solutions start to lose their numerical independence, which is a common 
occurrence when integrating stiff equations, the solution vectors are ortho-normalized 
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again before the integration proceeds further. The desired solution is then obtained 
by piecing together the intermediate solutions. 

For the purposes of numerical integration the Orr-Sommerfeld equation (4.2) plus 
its boundary conditions must be formulated as a two-point boundary-value problem. 
This is accomplished by introducing a normalization condition at jj = 0. This 
condition takes the form 

The form of (6.1) stems from the form of an intermediate variable, 6 = #“‘Z2$. E; 
is introduced to simplify the numerical formulation and it is convenient to place the 
normalization condition on f [  rather than $. 

For the rigid wall (4.3), (4.4a) and (6.1) constitute the four boundary conditions. 
The fifth condition (4.4b) serves as a characteristic equation for determining the 
complex eigenvalue E corresponding to given values of Re and a. In the case 
of a flexible wall, the boundary conditions are (4.3), (4.7) and (6.1), while (4.9), 
supplemented by (4.10) and (4.12), acts as the characteristic equation. 

The Blasius velocity profile and its second derivative are required as functions of 
jj in the On-Sommerfeld equation, (4.2). Previous investigators who have sought 
similar numerical solutions, e.g. Landahl & Kaplan (1965) and Jordinson (1970), have 
obtained U and U” from numerical solutions to the Blasius equation. This is a 
relatively costly procedure in terms of computing time, so we chose the faster, but 
probably less accurate, course of fitting polynomials to the tabular data presented 
in Rosenhead (1963) for U and U”. These polynomials were found to fit the data very 

9”(0)-2$’(0) = 1. (6.1) 

accurately. 
6.2. Eigenvalue search schemes 

The characteristic equation is of the form 

E(Z, E ,  Re) = 0 ,  (6.2) 

where the function E is either given by $’(O) in the rigid-wall case or by Yo- Y, in 
the flexible-wall case. Re and are given, and E is treated as a single complex 
eigenvalue. 

For the earlier computations, presented by Garrad (1980), the eigenvalue search 
scheme was based on the following Lagrangian interpolation formula :t 

j * l  

where E, = E(Z, E,, Re). This allows the next estimate of E to be found from the k 
former estimates. No difficulty was encountered in the application of this method to 
the problems considered by Garrad (1980). Usually three iterations were sufficient 
to solve (6.2) to within acceptable tolerance. The solutions to these particular 
problems were not usually too far removed from the ones for a rigid wall. When we 
attempted to use the method for Kramer-type surfaces, however, serious problems 
were often encountered. It was frequently found that, unless the initial guess was 
close to the required solution, the use of (6.3) would not yield a convergent solution. 
Consequently, the method based on the Lagrangian interpolation formula was 
abandoned in favour of another. 

For the later computations, i.e. the ones presented in the present paper, the method 

t This was one of the methods used by Kaplan (1964). 
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of false position (regula falsi) is used (see, e.g., Ostrowski 1960). With this method, 
which was also used by Kaplan, the (k+ 1)th estimate for C is given by 

On the whole this method proved to be superior to the Lagrangian interpolation 
formula (6.3). No trouble was experienced in finding solutions for non-dissipative 
walls. However, in certain cases of flexible walls with internal damping serious 
difficulties were encountered. Very abrupt changes in the character of the eigen- 
solutions would sometimes occur when the wavenumber or Reynolds number was 
slightly changed. It is thought that this kind of problem is indicative of some sort 
of interaction or coalescence between the TSI and FISI. A full investigation of these 
effects is beyond the scope of the relatively simple methods described above. More 
suitable methods for investigating modal interactions have been developed by Dr 
M. Gaster and Mr G. J .  K. Willis of NMI Ltd, Teddington (formerly the National 
Maritime Institute). Some preliminary results are presented by Carpenter, Gaster & 
Willis (1983) and a more detailed account will be given in Part 3. 

6.3. RedeJining the non-dimensional parameters 
Many of the non-dimensional parameters in (3.8), which describe the properties of 
the flexible surface, depend on the boundary-layer displacement thickness a*. In  most 
practical cases the mass, flexural rigidity, tension and spring stiffness do not vary 
along the surface. On the other hand S* increases with distance downstream. 
Consequently, it  is necessary to redefine these parameters each time the value of S* 
(i.e. Re) is changed. This is carried out by designating a more or less arbitrary 
reference value Reo for the Reynolds number. The values of the non-dimensional 
parameters corresponding to Reo are supplied as data and values of the parameters 
at other values of Re are given by 

7. Results of numerical analysis 
7.1.  Rigid Jlat plate 

In  order to check our numerical methods, a thorough investigation was made of the 
stability of Blasius flow over a rigid flat plate. The results obtained were compared 
with previously obtained theoretical and experimental data. 

The calculated curve of neutral stability and other curves of constant Ci are 
presented in figure 7. Data points corresponding to the numerical solutions of Kaplan 
(1964) and Jordinson (1970) are also plotted on figure 7.  It can be seen that there 
is fairly good agreement between the present results and those obtained by the earlier 
investigators. The critical Reynolds number obtained using the present results is 504 
as compared with 518 and 520 obtained by Kaplan and Jordinson respectively. The 
most unstable wavenumber is found to be ti .= 0.307 whereas Kaplan and Jordinson 
obtained 0.315 and 0.301 respectively. The small discrepancies between the present 
results and the others are probably caused mainly by differences in the form of 
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FIGURE 7. Curves of constant Ei for Blasius boundary layer on a rigid surface. 

mean-velocity profile. Kaplan and Jordinson integrated the Blasius equation 
numerically to obtain the mean velocity whereas we adopted the less accurate 
procedure of fitting polynomials to tabular data of U and U”. Other possible 
reasons for discrepancies are different choices of the value of at which to impose 
the outer boundary conditions and, in the case of Kaplan, the difficulty of 
accurately determining his results from his figure 8. 

For completeness, comparisons were also made of the amplification rates. In  
figure 3.6 of Garrad (1980) amplification rates computed by means of the present 
methods are shown to compare very well with Kaplan’s results and the experimental 
data of Schubauer & Skramstad (1948). 

7.2. Comparison with Landahl & Kaplan’s results for spring-backed membrane 
One of the special cases considered by Kaplan (1964) was a compliant surface 
consisting of a tensioned membrane backed by a spring foundation. There was no 
substrate fluid but various values of damping coefficient were considered. The neutral 
curves for such a surface are shown in figures 19 and 21 of Kaplan for various values 
of damping coefficient. Kaplan’s expression for the wall admittance Yl was 
incorporated into our computer program and results obtained for the case shown in 
Kaplan’s figure 21a. A comparison between these results and those of Kaplan is 
presented in figure 3.10 of Garrad (1980). On the whole his results agree reasonably 
well with those of Kaplan. Garrad’s value for critical Reynolds number is 580 as 
compared with Kaplan’s value of 632. 

It was realized later by Landahl & Kaplan (1965) that Kaplan’s original formula 
for Yl was incorrect. Consequently, a corrected version of the formula was given and 
revised forms of the calculated neutral curves were presented in figures 6 and 8 of 
Landahl & Kaplan. We also attempted to compute neutral curves for the case shown 
in Landahl & Kaplan’s figure 8. However, we were unable to find any neutral curves 
in the range 300 < Re < 3100 and 0.03 < 5 < 0.60. 
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FIQURE 8. Comparison of Landahl BE Kaplan’s results with those obtained by present methods using 
(7.1).  Spring-backed membrane: c, = 0.5; m = 1.0; w, = 0.4; R, = 5000; d = 0.05; 0, Landahl and 
Kaplan’s results; -, present results. 

Landahl & Kaplan characterized the spring stiffness of the surface by the cut-off 
frequency o = ( K / p ,  b)k  It was noticed that they stated that the cut-off frequency 
was made dimensionless by dividing o by 6/ U ,  (where 6 is boundary-layer thickness). 
This would imply that the relationship between W and its reference value 0, is given 
by 

55=W,-. Re, 
Re 

In  fact, in order to make o dimensionless one should multiply by &/Urn,  which implies 

Re W=W,-. 
Re, 

When the incorrect relationship ( 7 . 1 )  was used in our computations the neutral curve 
shown in figure 8 was obtainedt and i t  can be seen that this curve agrees closely with 
the results of Landahl & Kaplan. Accordingly we conclude that the results presented 
in figures 6 and 8 of Landahl & Kaplan are probably incorrect. 

7.3. Comparison between experimental and theoretical results 

Babenko and his colleagues have carried out a series of careful experiments on the 
hydrodynamic stability of flows over a variety of flexible surfaces: see Babenko 
( 1 9 7 3 ~ )  and Babenko & Kozlov (1973). Their results are apparently the only 
experimental data on stability available for comparison with theory. Babenko 
(1973b) described the methods used to determine the mechanical properties of the 
flexible surfaces. A detailed description of the test facility and instrumentation was 
given by Babenko, Gintetskii & Kozlov (1973). 

A special low-turbulence water tunnel was designed for the experiments. The water 
speed could be varied up to 0.15 m/s and the ambient turbulence intensity was 0.04 % 
during the experiments. The 3 m long working section was fitted with a false floor 

t For the results shown in figure 8 the boundary-layer thickness 6 is used as a reference length 
rather than 6*. 
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which for the stability experiments either served as the rigid wall or was replaced 
by various flexible surfaces. A facility was provided for suction at the fore and aft 
edges of the working section. This helped to maintain a uniform velocity distribution 
throughout. A camera and related control equipment could be mounted on a carriage 
which ran on rubber wheels along the top of the working section. 

Flow visualization was achieved by means of the telhrium technique, see Wortmann 
(1953, 1969). This method uses a specially manufactured wire of 0.05 mm diameter 
coated with tellurium. A continuous or pulsed electric current could be passed 
through the wire. The instantaneous velocity measurements were made by photo- 
graphing the colloidal bubble streams emitted from the tellurium wire as it passed a 
pulsed current. A fairly complex control system was used so that current pulses and 
triggering of the camera were well synchronized. The wire support was streamlined 
by means of a plastic cover. 

A bronze ribbon, 150 x 3 x 0.15 mm, was positioned upstream of the test section. 
This could be vibrated mechanically at specific frequencies and amplitudes. The flow 
disturbance initiated by the vibrating ribbon could be observed by means of the 
tellurium technique. In  order to avoid the occurrence of transition at the ribbon i t  
was necessary to limit the ribbon amplitude to 0.5 mm. In fact an amplitude of 
0.32 mm was used for the experiments. For similar reasons the velocity of the ribbon 
was limited to 2 % of the free-stream value. 

The curve of neutral stability (in the form of non-dimensional frequency MJRe 
vs Re), obtained from the experimental data of Babenko & Kozlov (1973) for a rigid 
wall, is compared with the experimental data of Schubauer & Skramstadt (1948) in 
figure 9.7 It can be seen that there is reasonable agreement. The experimental data 
of Ross et al. (1970), also shown in figure 9, also agree well with those of Babenko 
and Kozlov. It can therefore be concluded that the methods used by Babenko et al. 
are basically sound. 

Babenko (19734 reported a fairly detailed investigation of flexible surfaces con- 
sisting of tensioned polyvinyl-chloride (PVC) membranes stretched over water-filled 
cavities. The effects on hydrodynamic stability of varying the substrate depth H, the 
free-stream velocity and the tension were all investigated. It was found that a 
reduction in substrate depth improved stability. The non-dimensional wavenumber 
and amplification rate varied little with H but the region of instability was 
considerably reduced. The normal fluctuating velocity v' was found to be a good 
indicator of the effect of the surface on the flow. For small values of H small values 
of v' were recorded. A reduction in the free-stream velocity produced growth in the 
region of instability and an increase in the wavenumber, phase speed and amplitude 
of disturbance. Changing the membrane tension had the most marked effect on 
stability. The surface with the lowest tension produced the best results, the critical 
Reynolds number being larger than the rigid-wall value by a factor of two. 

Owing to the detailed information given by Babenko (1973a, b) on the simple 
membrane surfaces and on the results of the experiments it is possible for us to carry 
out computations on the stability of such surfaces. Two cases (designated Bl-B5 and 
B36-B42 by Babenko) were chosen for theoretical investigation ; their specifications 
are given in table 2. Computed points on the neutral curve are plotted in figure 10. 
They are almost indistinguishable from the theoretical neutral curve for the rigid wall. 
Thus it would appear that there is little or no agreement between Babenko's 
experimental data and the results of the present theory. 

t Various theoretical results are also plotted in figure 9 and will be discussed below. 
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FIQURE 9. Comparison of theoretical neutral curves with experimental data for rigid wall: -, 
present results; - - - --, numerical investigation with boundary layer growth taken into account 
(Gaster 1974); *, numerical investigation using full Navier-Stokes equations (Fasel 1980) ; 0, 
experimental data of Schubauer & Skramstadt (1948); A, experimental data of Ross et al. (1970); 

, experimental curve of Babenko & Kozlov (1973). 

Babenko’s urn H T 
designation (m/s) (mm) (N/m) lib cA40 cTO Re, 
B 1 -B5 0.11 70 79 7.666 0.0104 715 1005 
B36-B42 0.13 10 25 1.289 0.0123 191 1005 

TABLE 2. Parameters for Babenko’s flexible surfaces 

Before considering the possible reasons for this lack of agreement it is worth 
pointing out that for the Reynolds-number range investigated by Babenko et al. the 
agreement between theory and experiment is also very poor in the rigid case. For 
larger Reynolds numbers, however, other investigators have found good agreement 
between the predictions of linear stability theory and experimental data for the rigid 
wall. For the lower Reynolds numbers near the critical value the experimental 
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FIQURE 10. Comparison of theoretical neutral curves with experimental data for simple membrane 
compliant surfaces. Theoretical results using present methods: -, rigid wall; 0, Bl-B5 and, 0, 
B36-B42 of Babenko (1973~) .  Experimental data: -----, rigid wall, Babenko & Kozlov (1973); 

Re 

, Bl-B5; and ----, B36-B42 of Babenko (1973~) .  

difficulties are at their 'most severe. Nevertheless, since the experimental data of 
Schubauer & Skramstadt, Ross et al. and Babenko & Kozlov are more or less in 
agreement, it is difficult to ascribe the discrepancy between the experimental and 
theoretical results to experimental error. Accordingly, the discrepancy is probably 
due to deficiencies in the theory in the case of the rigid wall, at least. It should be 
remembered that the Orr-Sommerfeld equation is approximate even within the 
framework of a linear theory. Terms connected with boundary-layer growth are 
omitted in order to preserve the parllel-flow assumption. When account is taken of 
the boundary-layer growth, see Gaster (1974) and Barry & Ross (1970), the agreement 
between the theoretical neutral curve and experimental data is improved, as can be 
seen in figure 9. There still remains a substantial discrepancy, however. This could 
very well arise because of the neglected .nonlinear terms. Points, corresponding to 
neutral stability, obtained by Faael(1980), by means of numerical integration of the 
full two-dimensional Navier-Stokes equations, are in significantly closer agreement 
with the experimental data, aa can be seen in figure 9. It is difficult, though, to draw 
firm conclusions from the few points computed by Fasel. 
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It is readily apparent from figure 10 that, while the theoretical neutral curves are 
almost identical for the rigid and flexible surfaces, the experimental data for the three 
surfaces show large differences. The data for the rigid wall and one of the flexible 
surfaces (B36-B42) are not greatly different but the data for the other flexible wall 
(Bl-B5) are markedly different. Three possible reasons for this difference can be 
advanced, namely: (i) a different criterion was used to determine instability for the 
flexible surfaces; (ii) nonlinear effects; (iii) the effects of flow-induced surface 
instabilities. Each of these will now be considered in turn. 

When the small disturbances are represented mathematically in the form (4.1) used 
for conventional linear theory it does not matter particularly whether one monitors 
a particular velocity component or an integral quantity, such as the total kinetic 
energy of the disturbance ; the predicted point of instability will not change. However, 
Gaster (1974) shows that if a more realistic form is chosen to describe the disturbance 
then it is possible to obtain considerably different results for the point of instability, 
depending on the quantity chosen to determine instability. In particular, one may 
expect that a neutral curve obtained by monitoring u' could differ considerably from 
one obtained by monitoring w'. Babenko & Kozlov do not explain precisely how they 
determined the point of instability, but it appears that u' may have been used in the 
rigid case and v' for the flexible surfaces. 

Nonlinear effects may be involved in a t  least two distinct ways. First, there are 
the direct nonlinear effects on the TSI which are possibly responsible for the 
discrepancy between theory and experiment in the rigid case. It is only to be expected 
that these effects will be modified by surface flexibility. With a flexible surface, 
however, other modes of instability, i.e. FISI, may be present. The possibility also 
arises, therefore, of a nonlinear interaction between the TSI and the FISI. This 
interaction may give rise to a much stronger instability. A somewhat similar effect 
has recently been demonstrated by Howe (1983) in a theoretical study of the influence 
of surface compliance on the production of sound by a turbulent boundary layer. In 
this case the flow-induced surface waves induced by a particular component of the 
boundary-layer pressure fluctuations can interact nonlinearly with another com- 
ponent. Although this is a higher-order effect and had, therefore, been neglected 
by previous authors, it gives rise to a comparatively intense noise source which can 
greatly increase the boundary-layer noise, in particular for Kramer-type surfaces. 

FISI, if present, may either affect instability directly or indirectly. As travelling 
waves they may become unstable before, or grow faster than, the TSI, in which case 
the experimentally determined neutral curve would correspond to PIS1 rather than 
TSI. Alternatively, they may be present as standing waves and alter the pressure 
gradient along the surface. This may have a stabilizing or destabilizing effect on TSI, 
depending on whether the modified pressure gradient is favourable or adverse. In the 
case under consideration, i.e. compliant surfaces consisting of tensioned membranes, 
the theoretically most unstable mode of FISI is a first-mode divergence (i.e. the 
membrane simply swells upward in a single hump). If the compliant surface is 
assumed to run the entire length of the working section (i.e. 3 m)t  it can be shown 
from equation (21) of Garrad & Carpenter (1982) that the critical velocities are 
0.325 m/s and 0.184 m/s for the two-dimensional surfaces corresponding to cases 
B1-B5 and B36-B42 respectively. In  the experiments the surfaces had free streamwise 
edges and Ellen (1977) has shown that the critical speed for such a surface is 0.5-0.6 

t This is a conservative assumption; a shorter compliant surface would have a higher critical 
velocity. 
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times that of the corresponding two-dimensional surface. The flow speeds in the 
experiments were 0.11 m/s and 0.13 m/s for cases BI-B5 and B36-B42 respectively, 
so it appears that the critical velocity for the FISI may well have been exceeded in 
the latter case at 1east.t 

7.4. Theoretical results for Kramer coating 

The present methods are now applied to Kramer-type flexible surfaces. The theoretical 
model used is described in $3.1 and the estimation of the various mechanical 
parameters for the coatings is discussed in $3.3. The calculated neutral curves 
corresponding to TSI for various values of the elastic modulus and for a flow speed 
of 18 m/s are presented in figure 11 .$ For these calculations it was assumed that the 
fluid substrate was absent (i.e. $3, = 0 in (4.12)). The Kramer coating with the best 
performance corresponds to E = 0.5 N mm-2 ; with E = 0.4 N mm-2 and 1 .O N mm-2 
respectively for the other two coatings. 

It can be seen from figure 11 that the region of instability becomes progressively 
smaller as E is reduced. This confirms the result obtained by means of the 
approximate theory presented in $5, since a reduction in E implies a reduction in 
spring stiffness K and flexural rigidity B which, in turn, implies a reduction in C, c;, 
keeping C ,  fixed. For the particular case of Re = 1150 (Re, = 4000) Landahl's (1962) 
figure 5 can be used to provide values for R, corresponding to the values of 8 and 
Fr (i.e. a )  on the upper and lower branches of the neutral curve for the rigid surface. 
In this way (5.6) and (5.8) can be used to show that I AFi I increases as E becomes 
smaller, and AFi > 0 for the lower branch of the neutral curve (i.e. the effect is 
destabilizing), whereas AFi < 0 for the upper branch (i.e. stabilizing). The conclusions 
based on this approximate analysis are borne out by the results presented in 
figure 11 at Re = 1150. 

The results of figure 11 can also be compared with predictions of Benjamin's (1960) 
theory for non-dissipative flexible surfaces. He showed that, when the surface 
compliance 2 (i.e. the surface deflection due to a pressure wave of unit amplitude) 
is positive, then the neutral curves are shifted to lower wavenumbers and higher 
Reynolds number, as shown in figure 4. 

By using (3.6) with C, = C ,  = 0 it  can be readily shown that 

In the present case with no substrate, $3s = 0. C,, C ,  and C K E  all depend on Re, as 
shown in (6.5), so 2 is a function of ol, F and Re for a particular coating. In  figure 12 
the variation of 2 is plotted along the upper and lower branches of the neutral 
curve for a rigid surface. The procedure adopted was to take the values of E and E 
which correspond to neutral stability on the rigid wall at a given value of Re. The 
parameters C,, C ,  and C K E  would then be evaluated for the flexible surface in 
question and the values of 2 obtained from (7.3). From figure 12 it can be seen that, 
in the case of E = 0.5 N mmP2, 2 becomes significantly non-zero at about Re = 1600 
and Re = 800, respectively, for the upper and lower branches. These values of Re are 
close to those for which the neutral curve corresponding to E = 0.5Nmm-2 in 

t It is worth noting that MacMichael, Klebanoff k Mease (1980) have shown that FISI in the 
form of static divergence probably gave rise to spurious drag reductions in some experimental 
studies of flows over compliant surfaces. 

$ It should be emphasized that, except for the case of E = 1.0 N/mmz, FISI in the form of 
travelling-wave flutter also occurred. 
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FIGURE 11.  The effect of a change in elastic modulus on the neutral curves for Kramer-type 
compliant surfaces with no substrate fluid and U ,  = 18 m/s: V, E = 0.1 N mm-%; A, 0.2 N mm-a; 
I, 0.3 N mm-2; 0,  0.5 N mm-e; +, 1.0 N rnm-l; ---, rigid surface. 

figure 11 begins to depart from the curve corresponding to the rigid wall. According to 
Benjamin’s theory the neutral curves would be expected to be displaced downward 
and to the right. This displacement should be greatest where 2 is greatest, i.e. at 
Re x 5500 on the upper branch and a t  Re !z 2500 on the lower one. This is much in 
accordance with what is shown in figure 11. The greatest displacement is observed 
at around Re = 2500. In  fact, for values of E less than 0.5 N mm-2 the effect is so 
pronounced that the neutral curve bifurcates into two separate loops. Also shown 
in figure 12 is the behaviour of 2 for a Gamer-type coating with no springy 
foundation. As might be expected these results show that bending stiffness determines 
the stability characteristics a t  the low Reynolds numbers whereas it is the spring 
stiffness that determines them at the higher Reynolds numbers. 

The transitional Reynolds number can be estimated by means of the en method 
of Smith & Gamberoni (1956). With this method i t  is assumed that the transition 
point is determined by the relationship 

(7.4) 

where xi represents the point of instability and xtr the transition point. Equation (7.4) 
can be rewritten as Retr EF 

2 dRe = 1.481n, (7.5) Jh,, c, 
where Re, and Retr are based on the values of S* a t  the points of instability and 
transition respectively. The integral in (7 5)  is evaluated keeping the non-dimensional 
frequency, p( = EEJRe), constant. The value of p giving the lowest value of Retr is 
sought. Two values of n were used in the present work, namely 9.5 and 7.35. The 
former value corresponds approximately to transition on rigid walls and the latter 
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FIGURE 12. The variation of Benjamin’s (1960) compliance factor along the neutral curve for some 
compliant surfaces: - , E = 0.3 N mm-2, and ----, 0.5 N mm-2 aa in figure 11; ---, 
E = 0.5 N mm-a and C,, = 0; - - -  --, E = 0.5 N mmW2 as in figure 14 with inviscid substrate fluid. 
(a) Upper branch of neutral curve. (b) Lower branch of neutral curve. 

value represents approximately the limit of validity for linear theory on rigid walls. 
The rationale for including calculations based on R = 7.35 is that the form of the TSI 
is likely to be similar on both flexible and rigid surfaces as long as linear theory holds, 
whereas it cannot be expected that the nonlinear development would be similar for 
the two types of surface. 

The values of transitional Reynolds numbert etc. for Kramer’s best coating 
(E = 0.5 N mm-2) are given in table 3, together with the corresponding values for 
a rigid wall. Note that the transitional Reynolds number for the flexible surface is 
more than twice that for the rigid wall. This suggests that the Kramer coating does 
have a transition-delaying capability even though the critical Reynolds number is 

t It should be emphasized that the transitional Reynolds numbers quoted for the non-dissipative 
walls in table 3 are based on TSI only. 
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Limit of linear growth Transition point 
Coating n = 7.35 n = 9.5 

urn A A 
Type (m/s) w e  Re B (mm) Re P (mm) 

Rigid wall - - 2310 42x 3.5 2765 2 9 ~ 1 0 - ~  4.9 
Kramer coating 18 no substrate 5165 8 x lo-" 18.1 5845 7 x 19.6 
Kramer coating? 18 0 5430 7 x  21.3 6025 6 x  23.3 
Kramer coating 18 200 1900 14x 2.0 2105 1 6 ~ 1 0 - ~  3.0 
Kramer coating 15 10 3915 12x 14.5 4546 ~ O X I O - ~  16.5 
Kramer coating 15 200 2648 18x 10.2 2874 1 7 ~ 1 0 - ~  11.2 

t Only the results for the TSI mode were used for this calculation. 

TABLE 3. Theoretical transitional Reynolds numbers for Kramer coatings. The results given above 
are for Kramer's coating C (E = 0.5 N/mm2). The values of wavelength correspond to the point 
of instability. 

_. . 
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FIGURE 13. The effect of viscoelastic damping on the neutral curves for a Kramer-type compliant 
surface with no substrate fluid and E = 0.5 N/mm2 and Urn = 18 m/s: -, TSI; m, FISI 
(v = 0); .,q = 0.02; m, 7 = 0.05; A, 7 = 0.1 (TSI). The unstable regions for the FISI are denoted 
by partial shading. 

identical with that for the rigid wall. Note also that the most unstable wavelengths 
involved for the Kramer coating are much longer than the thickness (2 mm) of the 
elastic plate or diaphragm. This is a fairly important point since the present theory 
is essentially a long-wave approximation. It becomes invalid when the value of the 
wavelength approaches the plate thickness. This limiting value of E is plotted on 
figure 11.  

The effect of viscoelavtic damping on the neutral curves is illustrated in figure 13. 
For real elastomers E and 7 vary in a fairly complex way with frequency (e.g. see 
figure 6). The results in figure 13 are for the simple case of constant E and 7. Neutral 
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FIGURE 14. Neutral curves for a Kramer-type compliant surface with an inviscid and a slightly 
viscous fluid substrate, E = 0.5 N rnrn-%, Urn = 18 m/s and 7 = 0: V, v,/v, = 0; 0,  vJv, = 1.0. 
The unstable regions for the FISI are denoted by partial shading. 

curves for both the TSI and FISI are shown in figure 13. It can be seen that 
viscoelastic damping has a slightly destabilizing effect on the TSI. The stabilizing 
effect on the FISI (i.e. in the form of travelling waves) is, however, much more 
pronounced. For even the lightest damping (e.g. 7 = 0.02) the FISI disappear 
completely. The neutral curves for the FISI with 7 = 0 form three separate regions 
of instability which are found within the cross-hatched regions shown in figure 13. 
The growth rates in the uppermost and lowest regions are very low compared with 
those in the central region, however. The numerical results shown in figure 13 for the 
TSI confirm the conclusion reached in $5 on the basis of the simple theory. 

The effect of including an inviscid fluid substrate is illustrated in figure 14. The 
neutral curves for TSI in figure 14 comprise two separate loops as compared with 
the single loop obtained with no substrate, shown in figures 11 and 13. Thus it can 
be Seen that an inviscid fluid substrate has a stabilizing influence on the TSI in 
accordance with the conclusion based on the approximate theory presented in $5.  
Reference to figure 12 shows that the inclusion of an inviscid fluid substrate is broadly 
similar in effect to a reduction in elastic modulus. Also shown in figure 14 are the 
neutral curves corresponding to the FISI. These take a completely different form from 
the TSI ones and, incidentally, are considerably more troublesome to compute. The 
FISI takes the form of a travelling-wave flutter with a phase speed fairly close to 
the free-stream velocity, which in turn is fairly close to c,, the free-wave speed. The 
FISI were identified by comparing the results of numerically integrating the 
Orr-Sommerfeld equation with those obtained with the purely inviscid theory. This 
inviscid theory is described briefly by Carpenter (19843) and will be described in more 
detail in Part 2. 

The neutral curves corresponding to a slightly viscous substrate fluid (v, /v,  = 1)  
are also included in figure 14. It will be observed that the region of instability is 
slightly extended for the TSI and considerably reduced for the FISI. This behaviour 
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RQWRE 15. The effects of substrate viscosity on the neutral curves for a Kramer-type compliant 
surface. E = 0.5 N mm-* and U ,  = 18 m/s: -, u,/v, = 0 ;  V, 50; 0,  100; A, 200; ., 1OOO. 

is consistent with predictions of the simple approximate theory in $5 and with the 
results of the inviscid theory mentioned above. Great difficulty was experienced in 
computing neutral curves for substrate viscosities between v,/v, = 1 and 50. The 
difficulty appears to be caused by an interaction between the TSI and FISI modes. 
The relatively simple numerical methods used for the present work are not suitable 
for dealing with this more complex situation. More advanced techniques have been 
developed by Dr M. Gaster and Mr G. J. K. Willis for application to the problem of 
interacting TSI and PIS1 modes. Their results have confirmed that the modes interact 
and that branch points exist in the (Z, Re)-plane. (See Carpenter et al. 1983 and 
Part 3 of the present paper). 

The present results, taken together with those of Gaster and Willis, suggest that, 
as the substrate viscosity is increased from zero, three regimes are encountered. For 
v,/v,  between zero and approximately unity the TSI and FISI modes do not appear 
to interact. In this regime the effects of damping are in accordance with the 
predictions of the approximate theories of $5 and Part 2. Between values of v,/v,  
close to unity and less than about 50, the TSI and FISI seem to exist as distinct but 
interacting modes (see Carpenter et al. 1983). There may be two complex eigenvalues 
C with positive (i.e. unstable) imaginary parts for parts of the (2, Re)-plane. In this 
regime the viscous damping seems to have a stabilizing effect on the TSI in that the 
second neutral-stability loop found at  Re 2 2600 in figure 14 disappears when v,/v,  
exceeds a small value. It was not possible to determine this value at all precisely using 
the present methods. According to Carpenter et al. (1983) the second TSI loop 
disappeared at v,/v,  11 2.5 but the value of bending stiffness was slightly different 
for their calculations. For values of v,/v,  greater than or equal to about 50 the process 
of coalescence between the two modes appears to be complete. There is now no more 
than one unstable eigenvalue for each point in the (a, Re)-plane. In this third regime 
it is again possible to compute complete neutral curves by means of the present 
methods; some examples are shown in figure 15. 
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FIQURE 16. Curves for constant Ei for Kramer-type compliant surfaces with a viscous fluid surface, 
E = 0.5 N mm-8 and VJV, = 200. (a) Urn = 18 m/s. (a) Urn = 15 m/s. 

A comparison of the effects of viscoelastic damping, a& depicted in figure 13, and 
of viscous damping, as in figures 14 and 15, shows that for the present case modal 
interaction only occurs for viscous damping. However, it should not be concluded 
that model interaction is only caused by viscous damping. Figure 3 of Carpenter 
(1984a) shows clear signs of modal interaction, induced solelv bv viscoelastic 

“ V  

damping, for a similar compliant coating with E = 0.3 MN/m2 rather than 
0.5 MN/m2. 

Curves of constant Fi corresponding to v,/v,  = 200 and U, = 18 m/s are presented 
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FIGURE 17. The variation of maximum growth rate with substrate viscosity for a Kramer-type 
compliant surface with and without viscoelastic damping, E = 0.5 N/mme, U ,  = 18 m/s and 
Re = 4735: -, FISI and combined instability; ---, TSI. 

in figure 16(a). The remnants of the separate TSI and FISI modes can be clearly 
discerned. In figure 17 the maximum values of ECi/F,. are plotted against u,/u, for 
7 = 0.0 and 0.1 : EEJE,. is chosen since this quantity provides the best guide to the 
effect of instability growth on transition (see (7.4)). It can be seen that damping has 
relatively little effect on the growth rate of the combined FISI/TSI mode. This 
observation fits in with Landahl’s (1962) conclusions concerning the interaction of 
a Class A (energy falling) and Class B (energy rising) instability. The curve 
corresponding to the TSI in figure 17 is somewhat speculative. The point on the curve 
corresponding to uJue = 1.0 was computed using the present methods. It is also 
known from the results of Carpenter, Gaster & Willis (1983) that the growth rate falls 
to zero somewhere between u,/u, = 1 and u,/v, = 5. Note that a ‘fossil’ remnant of 
the TSI exists for low to moderate values of us/ue,  in that there is a shallow local 
maximum in ZFJE, up to about VJU, = 26. The locus of this local maximum appears 
to extrapolate back to the value of (CLEi/Er)max corresponding to the TSI at  v,/u, = I .O. 
It is a feature of the combined FISI/TSI mode, however, not of a separate TSI mode. 

The phenomenon of modal interaction between the TSI and FISI bears some 
similarity to the resonant-surface concept discussed by Benjamin (1960) (according 
to the classification adopted by Benjamin the TSI would be a Class A wave and the 
travelling-wave flutter FISI a Class B). The only favourable effect of the interaction 
in the present case, however, is that viscous damping has a stabilizing effect on the 
combined mode of instability. On the other hand, it can be seen from figures 16(a) 
and 17 that the growth rates for the combined mode considerably exceed those for 
the rigid wall. It is not surprising, therefore, that the transitional Reynolds number 
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FIQIJRE 18. The variation of maximum growth rate with substrate viscosity for a Kramer-type 
compliant surface having various degrees of viscoelastic damping, E = 0.5 N mm-*, U, = 15 m/s 
and Re = 4735: -, TSI; -----, FISI. 

given in table 3 for v,/v,  = 200t is substantially lower than that for the rigid wall 
and very much lower than that for the purely TSI mode with an inviscid substrate 
fluid. So it appears that transition delay can only be achieved if modal interaction 
is avoided. 

In order to investigate the effects of damping in the absence of modal interaction 
the calculations were repeated at a free-stream velocity of 15 m/s. Curves of constant 
Ci for a free-stream velocity of 15 m/s and vJv, = 200 are presented in figure 16(b). 
Note that these curves are quite different from the ones shown in figure 16(a). There 
is now no sign of any modal interaction and the TSI and FISI both respond to 
damping in the manner predicted by the simpler theories (i.e. TSI is destabilized and 
FISI stabilized). The growth rates, i.e. values of (aCi/Er)max, for U ,  = 15 m/s are 
given in figure 18 as functions of vs/ve for various values of the viscoelastic damping 
factor 7. Note that the FISI is completely eliminated for all but the lowest levels of 
viscoelastic damping. Note also that for low damping the growth rates are well below 
the corresponding rigid-wall value. It appears from figure 18 that the stabilizing 
effects of damping on the FISI are much stronger than its destabilizing effect on the 
TSI . 

Since the viscoelastic damping factor is a material property it may be regarded 
as a fixed parameter; for Kramer’s coatings 7 is probably of the order of 0.1. Viscous 
damping, on the other hand, may be regarded as variable. Thus the question arises 
of how to define the optimum value of v,/v,  for a given level of viscoelastic damping. 
Two possible definitions are: (i) the value of v,/v,  for which the growth rate of the 
FISI becomes zero; or (ii) the value at which the growth rates of the PIS1 and TSI 
become equal or are closest in value. Clearly these definitions of optimum viscosity 
would not be applicable when modal interaction occurs; on the other hand, there is 

t The growth rate for this caae is similar to that for Kramer’s optimum value of viscosity. 
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unlikely to be any prospect of a transition delay when modal interaction occurs. For 
U ,  = 15 m/s and 17 = 0.0 it is apparent from figure 18 that v,/v, N 16 is the optimum 
value according to the first of the above definitions and v,/v, 5 1.0 according to the 
second. For 17 = 0.1 the optimum value appears to be v,/v, 6 1.0 according to both 
definitions. 

In conclusion, let us rettlrn to the question of whether the theoretical results 
corroborate Kramer’s experimental observations. In one important sense Kramer’s 
views have been vindicated. It has been shown (see table 3) that a very considerable 
transition delay is theoretically possible for Kramer’s best coating although not at 
his top operational speed with his optimum level of viscous damping. Also, when 
account is taken of the deleterious effect on the FISI of reducing the surface stiffness 
it seems plausible from the results shown in figure 11 that Kramer’s coating C 
( E  = 0.5 MN/m2) should yield better results than either coating B ( E  = 1 .O MN/m2) 
or coating D ( E  = 0.4 MN/m2). It is in the matter of the optimum value of substrate 
viscosity that theory and experimental observation would appear to differ substan- 
tially. The main cause of the discrepancy would appear to be the occurrence of modal 
interaction. If one were to imagine how the results of figure 17 would appear in the 
absence of modal interaction, in other words if the growth rates of the TSI and FISI 
were to behave in a similar fashion to those in figure 18, it  seems quite possible that 
the optimum value of v,/v, as defined above would be in the region of 1W500. A t  
the same time, bearing in mind that for TSI alone the theoretical transitional 
Reynolds number for an inviscid substrate and U, = 18 m/s is well over twice the 
rigid value (see table 3), there would appear to be ample scope for substantial 
transition delay in the absence of modal interaction. It would appear, then, that a 
key question is whether or not modal interaction was likely to have occurred under 
the conditions of Kramer’s tests. Two points should be borne in mind when 
considering this question. First, the wavelength of the disturbance is relatively small 
when modal interaction occurs, e.g. according to table 3 for v,/v, = 200, h = 2-3 mm 
when U ,  = 18 m/s (modal interaction) but h = 10-11 mm when U ,  = 15 m/s (no 
modal interaction). For wavelengths of the order of the plate thickness (i.e. 2 mm 
in the case of Kramer’s coatings) the present theoretical model is not really valid. 
For instance, the attenuation of the disturbance as it passes through the thickness 
of the plate, which is bound to be significant for these short waves, has been neglected 
in the present theory. One would expect such effects to reduce the growth of the 
instabilities. The second point to bear in mind is that for the present calculations a 
flat-plate geometry was assumed, whereas Kramer’s models were actually slender 
bodies of revolution (see figure l c ) .  It is surely rather unreasonable to expect the 
mechanism of the modal interaction to be unaffected by such relatively large 
differences in geometry. 

8. Conclusions 
A theoretical model of a Kramer-type compliant surface has been developed. This 

model has been used to investigate numerically the hydrodynamic stability of such 
surfaces. Some other surfaces have also been studied. A simple approximate theory 
has been developed for predicting the effects of surface properties on the TSI. Under 
normal circumstances the results of this simple theory are in agreement with the 
results of the numerical investigation. 

The numerical investigation has resulted in the following main conclusions. 
(i) There are two main modes of instability, namely Tollmien-Schlichting Instability 
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(TSI) and Flow-Induced Surface Instability (FISI) in the form of a travelling-wave 
flutter. 

(ii) Damping, both viscous and viscoelastic, normally destabilizes the TSI and 
stabilizes the FISI. The latter effect appears to be more pronounced. 

(iii) Modal interaction and even coalescence between the TSI and FISI may occur 
when viscous damping is present. Under the conditions investigated in the present 
paper viscoelastic damping acting alone did not lead to modal interaction. Thus there 
is a clear difference between the two types of damping. 

(iv) Kramer-type coatings are theoretically capable of considerable transition 
postponement provided modal interaction does not occur. 

(v) The opposing effects of damping on the TSI and FISI may lead to optimum 
values of substrate viscosity. 

(vi) The neutral curves obtained experimentally by Babenko et al. for flows over 
tensioned membranes do not agree with those predicted by linear hydrodynamic 
stability theory. 
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